xv6/bootasm.S

 #include "asm.h"
#include "memlayout.h"
#include "mmu.h" # Start the first CPU: switch to -bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs= %ip=7c00. .code16 # Assemble for -bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable # Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment # Physical address line A20 is tied to zero so that the first PCs
# with MB would run software that assumed MB. Undo that.
seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64 seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60 # Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn’t change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0 # Complete transition to -bit protected mode by using long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<), $start32 .code32 # Tell assembler to generate -bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS # Set up the stack pointer and call into C.
movl $start, %esp
call bootmain # If bootmain returns (it shouldn’t), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin # Bootstrap GDT
.p2align # force byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc:
.word (gdtdesc - gdt - ) # sizeof(gdt) -
.long gdt # address gdt

xv6/bootmain.c

 // Boot loader.
//
// Part of the boot sector, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine. #include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h" #define SECTSIZE 512 void readseg(uchar*, uint, uint); void
bootmain(void)
{
struct elfhdr *elf;
struct proghdr *ph, *eph;
void (*entry)(void);
uchar* pa; elf = (struct elfhdr*)0x10000; // scratch space // Read 1st page off disk
readseg((uchar*)elf, , ); // Is this an ELF executable?
if(elf->magic != ELF_MAGIC)
return; // let bootasm.S handle error // Load each program segment (ignores ph flags).
ph = (struct proghdr*)((uchar*)elf + elf->phoff);
eph = ph + elf->phnum;
for(; ph < eph; ph++){
pa = (uchar*)ph->paddr;
readseg(pa, ph->filesz, ph->off);
if(ph->memsz > ph->filesz)
stosb(pa + ph->filesz, , ph->memsz - ph->filesz);
} // Call the entry point from the ELF header.
// Does not return!
entry = (void(*)(void))(elf->entry);
entry();
} void
waitdisk(void)
{
// Wait for disk ready.
while((inb(0x1F7) & 0xC0) != 0x40)
;
} // Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// Issue command.
waitdisk();
outb(0x1F2, ); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> );
outb(0x1F5, offset >> );
outb(0x1F6, (offset >> ) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors // Read data.
waitdisk();
insl(0x1F0, dst, SECTSIZE/);
} // Read ’count’ bytes at ’offset’ from kernel into physical address ’pa’.
// Might copy more than asked.
void
readseg(uchar* pa, uint count, uint offset)
{
uchar* epa; epa = pa + count; // Round down to sector boundary.
pa -= offset % SECTSIZE; // Translate from bytes to sectors; kernel starts at sector 1.
offset = (offset / SECTSIZE) + ; // If this is too slow, we could read lots of sectors at a time.
// We’d write more to memory than asked, but it doesn’t matter --
// we load in increasing order.
for(; pa < epa; pa += SECTSIZE, offset++)
readsect(pa, offset);
}

xv6/bootasm.S + xv6/bootmain.c的更多相关文章

  1. XV6源代码阅读-中断与系统调用

    Exercise1 源代码阅读 1.启动部分: bootasm.S bootmain.c 和xv6初始化模块:main.c bootasm.S 由16位和32位汇编混合编写成的XV6引导加载器.boo ...

  2. xv6 makefile

    1. xv6.img的构建 在makefile中 bootblock: bootasm.S bootmain.c $(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. - ...

  3. xv6的作业翻译——作业1 - shell和系统调用

    Xv6的lecture LEC 1 Operating systems   L1: O/S overview L1:O/S概述   * 6.828 goals 6.828的目标   Understan ...

  4. ubuntu编译运行xv6

    最近想找个简单的类Unix系统学习下, xv6不错的, 所有代码加起来不到一万行,首先把代码跑起来还是很重要的. # 下载xv6源码并编译 git clone git://pdos.csail.mit ...

  5. xv6 + Qemu 在Ubuntu下编译运行教程【转】

    转自:https://blog.csdn.net/yinglang19941010/article/details/49310111 如果想要离线看教程,可以下载该 文档 一.使用工具说明 1.    ...

  6. XV6操作系统代码阅读心得(三):锁

    锁是操作系统中实现进程同步的重要机制. 基本概念 临界区(Critical Section)是指对共享数据进行访问与操作的代码区域.所谓共享数据,就是可能有多个代码执行流并发地执行,并在执行中可能会同 ...

  7. XV6学习(2)Lab syscall

    实验的代码放在了Github上. 第二个实验是Lab: system calls. 这个实验主要就是自己实现几个简单的系统调用并添加到XV6中. XV6系统调用 添加系统调用主要有以下几步: 在use ...

  8. XV6学习(1) Lab util

    正在学习MIT的6.S081,把做的实验写一写吧. 实验的代码放在了Github上. 第一个实验是Lab util,算是一个热身的实验,没有涉及到系统的底层,就是使用系统调用来完成几个用户模式的小程序 ...

  9. lab 1实验报告

    练习1:理解通过make生成执行文件的过程. 1.操作系统镜像文件ucore.img是如何一步一步生成的? 生成 bin/kern 部分 生成 init.o 生成 readline.o 生成 stdi ...

随机推荐

  1. python的N个小功能(找到符合要求的图片,重命名,改格式,缩放,进行随机分配)

    ########################################################################## 循环读取该目录下所有子目录和子文件 ####### ...

  2. Django文字教程

    user-----URL对应关系-------视图函数def func1()-------------- 函数给用户返回的实质上就是一个字符串,过程:通过open函数打开HTML,把HTML读到内存中 ...

  3. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  4. 【BZOJ3563/BZOJ3569】DZY Loves Chinese I/II(随机化,线性基)

    [BZOJ3563/BZOJ3569]DZY Loves Chinese I/II(随机化,线性基) 题面 搞笑版本 正经版本 题面请自行观赏 注意细节. 题解 搞笑版本真的是用来搞笑的 所以我们来讲 ...

  5. 【状压DP】【CF8C】 Looking for Order

    传送门 Description 给你n个点,每次可以从起点到最多两个点然后回到起点.求经过每个点最少一次的最短欧氏距离和是多少 Input 第一行是起点的坐标 第二行是点的个数\(n\) 下面\(n\ ...

  6. Codeforces 895.D String Mark

    D. String Mark time limit per test 4 seconds memory limit per test 256 megabytes input standard inpu ...

  7. struts的status属性

    struts2 <s:iterator> status属性 转载▼   iterator标签主要是用于迭代输出集合元素,如list set map 数组等,在使用标签的时候有三个属性值得我 ...

  8. command not found: django-admin.py

    http://www.cnblogs.com/Xjng/p/3559984.html django-admin.py startproject projectname  其中projectname 为 ...

  9. git grep mysql 操作历史

    history |grep mysql-----git history匹配出mysql操作的命令 !626 到mysql命令安装处链接mysql /usr/local/mysql/bin/mysql ...

  10. Java基础之equals() 和 hashCode()

    equals()是Object中的一个方法: public boolean equals(Object obj) { return (this == obj); } 在Object中equals()方 ...