xv6/bootasm.S + xv6/bootmain.c
xv6/bootasm.S
#include "asm.h"
#include "memlayout.h"
#include "mmu.h" # Start the first CPU: switch to -bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs= %ip=7c00. .code16 # Assemble for -bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable # Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment # Physical address line A20 is tied to zero so that the first PCs
# with MB would run software that assumed MB. Undo that.
seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64 seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60 # Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn’t change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0 # Complete transition to -bit protected mode by using long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<), $start32 .code32 # Tell assembler to generate -bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS # Set up the stack pointer and call into C.
movl $start, %esp
call bootmain # If bootmain returns (it shouldn’t), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin # Bootstrap GDT
.p2align # force byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc:
.word (gdtdesc - gdt - ) # sizeof(gdt) -
.long gdt # address gdt
xv6/bootmain.c
// Boot loader.
//
// Part of the boot sector, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine. #include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h" #define SECTSIZE 512 void readseg(uchar*, uint, uint); void
bootmain(void)
{
struct elfhdr *elf;
struct proghdr *ph, *eph;
void (*entry)(void);
uchar* pa; elf = (struct elfhdr*)0x10000; // scratch space // Read 1st page off disk
readseg((uchar*)elf, , ); // Is this an ELF executable?
if(elf->magic != ELF_MAGIC)
return; // let bootasm.S handle error // Load each program segment (ignores ph flags).
ph = (struct proghdr*)((uchar*)elf + elf->phoff);
eph = ph + elf->phnum;
for(; ph < eph; ph++){
pa = (uchar*)ph->paddr;
readseg(pa, ph->filesz, ph->off);
if(ph->memsz > ph->filesz)
stosb(pa + ph->filesz, , ph->memsz - ph->filesz);
} // Call the entry point from the ELF header.
// Does not return!
entry = (void(*)(void))(elf->entry);
entry();
} void
waitdisk(void)
{
// Wait for disk ready.
while((inb(0x1F7) & 0xC0) != 0x40)
;
} // Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// Issue command.
waitdisk();
outb(0x1F2, ); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> );
outb(0x1F5, offset >> );
outb(0x1F6, (offset >> ) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors // Read data.
waitdisk();
insl(0x1F0, dst, SECTSIZE/);
} // Read ’count’ bytes at ’offset’ from kernel into physical address ’pa’.
// Might copy more than asked.
void
readseg(uchar* pa, uint count, uint offset)
{
uchar* epa; epa = pa + count; // Round down to sector boundary.
pa -= offset % SECTSIZE; // Translate from bytes to sectors; kernel starts at sector 1.
offset = (offset / SECTSIZE) + ; // If this is too slow, we could read lots of sectors at a time.
// We’d write more to memory than asked, but it doesn’t matter --
// we load in increasing order.
for(; pa < epa; pa += SECTSIZE, offset++)
readsect(pa, offset);
}
xv6/bootasm.S + xv6/bootmain.c的更多相关文章
- XV6源代码阅读-中断与系统调用
Exercise1 源代码阅读 1.启动部分: bootasm.S bootmain.c 和xv6初始化模块:main.c bootasm.S 由16位和32位汇编混合编写成的XV6引导加载器.boo ...
- xv6 makefile
1. xv6.img的构建 在makefile中 bootblock: bootasm.S bootmain.c $(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. - ...
- xv6的作业翻译——作业1 - shell和系统调用
Xv6的lecture LEC 1 Operating systems L1: O/S overview L1:O/S概述 * 6.828 goals 6.828的目标 Understan ...
- ubuntu编译运行xv6
最近想找个简单的类Unix系统学习下, xv6不错的, 所有代码加起来不到一万行,首先把代码跑起来还是很重要的. # 下载xv6源码并编译 git clone git://pdos.csail.mit ...
- xv6 + Qemu 在Ubuntu下编译运行教程【转】
转自:https://blog.csdn.net/yinglang19941010/article/details/49310111 如果想要离线看教程,可以下载该 文档 一.使用工具说明 1. ...
- XV6操作系统代码阅读心得(三):锁
锁是操作系统中实现进程同步的重要机制. 基本概念 临界区(Critical Section)是指对共享数据进行访问与操作的代码区域.所谓共享数据,就是可能有多个代码执行流并发地执行,并在执行中可能会同 ...
- XV6学习(2)Lab syscall
实验的代码放在了Github上. 第二个实验是Lab: system calls. 这个实验主要就是自己实现几个简单的系统调用并添加到XV6中. XV6系统调用 添加系统调用主要有以下几步: 在use ...
- XV6学习(1) Lab util
正在学习MIT的6.S081,把做的实验写一写吧. 实验的代码放在了Github上. 第一个实验是Lab util,算是一个热身的实验,没有涉及到系统的底层,就是使用系统调用来完成几个用户模式的小程序 ...
- lab 1实验报告
练习1:理解通过make生成执行文件的过程. 1.操作系统镜像文件ucore.img是如何一步一步生成的? 生成 bin/kern 部分 生成 init.o 生成 readline.o 生成 stdi ...
随机推荐
- malloc与free函数用法
在C里,内存管理是通过专门的函数来实现.另外,为了兼容各种编程语言,操作系统提供的接口通常是 C 语言写成的函数声明 (Windows 本身也由C和汇编语言写成). 1 分配内存 malloc 函数 ...
- QT 选择对话框简单示例
QT 选择对话框简单示例 部分代码: pDialog->addSeparator(); QAction *pmb2 = pDialog->addAction(QString::fromLo ...
- 【刷题】BZOJ 2152 聪聪可可
Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一般情况下石头剪刀布就好 ...
- Tajo--一个分布式数据仓库系统(设计架构)
上一篇Tajo--一个分布式数据仓库系统(概述)废话了一通,下面介绍一下Tajo的体系结构.以及官方的实验成果吧 一.体系架构 Tajo采用了Master-Worker架构(下图虚线框目前还在计划中) ...
- 最小点权覆盖集&最大点权独立集
最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...
- BZOJ 3786: 星系探索 解题报告
3786: 星系探索 Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球均有且仅 ...
- Jenkins远程代码执行漏洞检查(CVE-2017-1000353)
Jenkins的反序列化漏洞,攻击者使用该漏洞可以在被攻击服务器执行任意代码,漏洞利用不需要任何的权限 漏洞影响范围: 所有Jenkins主版本均受到影响(包括<=2.56版本)所有Jenkin ...
- 初识python版本
区别一: python2x:源码重复不规范. python3x:重新整理规范了源码. 区别二: python2x: 默认的编码方式ascii,显示中文需要首行添加:# _*_ encoding: u ...
- linux 进程信号集合 sigset_t
sigset_t 号集及信号集操作函数:信号集被定义为一种数据类型: typedef struct { unsigned long sig[_NSIG_WORDS]: } sigset_t 信号集用来 ...
- Codeforces 17.E Palisection
E. Palisection time limit per test 2 seconds memory limit per test 128 megabytes input standard inpu ...