python kd树 搜索 代码
kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,依次选择坐标轴对空间进行切分,选择训练实例点在选定坐标轴上的中位数为切分点。具体kd树的原理可以参考kd树的原理。
代码是参考《统计学习方法》k近邻 kd树的python实现得到
首先创建一个类,用于表示树的节点,包括:该节点的值,用于划分左右子树的切分轴,左子树,右子树
class decisionnode:
def __init__(self,value=None,col=None,rb=None,lb=None):
self.value=value
self.col=col
self.rb=rb
self.lb=lb
切分点为坐标轴上的中值,下面代码求得一个序列的中值
def median(x):
n=len(x)
x=list(x)
x_order=sorted(x)
return x_order[n//2],x.index(x_order[n//2])
然后就可以构造一颗kd树,左子树小于切分点,右子树大于切分点,data是输入的数据
def buildtree(x,j=0):
rb=[]
lb=[]
m,n=x.shape
if m==0: return None
edge,row=median(x[:,j].copy())
for i in range(m):
if x[i][j]>edge:
rb.append(i)
if x[i][j]<edge:
lb.append(i)
rb_x=x[rb,:]
lb_x=x[lb,:]
rightBranch=buildtree(rb_x,(j+1)%n)
leftBranch=buildtree(lb_x,(j+1)%n)
return decisionnode(x[row,:],j,rightBranch,leftBranch)
接下来是树的搜索过程,可以用下图表示树的搜索过程,具体过程可以参考kd树的原理。

代码如下:
#搜索树:nearestPoint,nearestValue均为全局变量
def traveltree(node,point):
global nearestPoint,nearestValue
if node==None: return
print(node.value)
print('---')
col=node.col
if point[col]>node.value[col]:
traveltree(node.rb,point)
if point[col]<node.value[col]:
traveltree(node.lb,point)
dis=dist(node.value,point)
print(dis)
if dis<nearestValue:
nearestPoint=node
nearestValue=dis
#print('nearestPoint,nearestValue' % (nearestPoint,nearestValue))
if node.rb!=None or node.lb!=None:
if abs(point[node.col] - node.value[node.col]) < nearestValue:
if point[node.col]<node.value[node.col]:
traveltree(node.rb,point)
if point[node.col]>node.value[node.col]:
traveltree(node.lb,point) def searchtree(tree,aim):
global nearestPoint,nearestValue
#nearestPoint=None
nearestValue=float('inf')
traveltree(tree,aim)
return nearestPoint def dist(x1, x2): #欧式距离的计算
return ((np.array(x1) - np.array(x2)) ** 2).sum() ** 0.5
完整代码在此处取
import numpy as np
from numpy import array
class decisionnode:
def __init__(self,value=None,col=None,rb=None,lb=None):
self.value=value
self.col=col
self.rb=rb
self.lb=lb #读取数据并将数据转换为矩阵形式
def readdata(filename):
data=open(filename).readlines()
x=[]
for line in data:
line=line.strip().split('\t')
x_i=[]
for num in line:
num=float(num)
x_i.append(num)
x.append(x_i)
x=array(x)
return x #求序列的中值
def median(x):
n=len(x)
x=list(x)
x_order=sorted(x)
return x_order[n//2],x.index(x_order[n//2]) #以j列的中值划分数据,左小右大,j=节点深度%列数
def buildtree(x,j=0):
rb=[]
lb=[]
m,n=x.shape
if m==0: return None
edge,row=median(x[:,j].copy())
for i in range(m):
if x[i][j]>edge:
rb.append(i)
if x[i][j]<edge:
lb.append(i)
rb_x=x[rb,:]
lb_x=x[lb,:]
rightBranch=buildtree(rb_x,(j+1)%n)
leftBranch=buildtree(lb_x,(j+1)%n)
return decisionnode(x[row,:],j,rightBranch,leftBranch) #搜索树:nearestPoint,nearestValue均为全局变量
def traveltree(node,point):
global nearestPoint,nearestValue
if node==None: return
print(node.value)
print('---')
col=node.col
if point[col]>node.value[col]:
traveltree(node.rb,point)
if point[col]<node.value[col]:
traveltree(node.lb,point)
dis=dist(node.value,point)
print(dis)
if dis<nearestValue:
nearestPoint=node
nearestValue=dis
#print('nearestPoint,nearestValue' % (nearestPoint,nearestValue))
if node.rb!=None or node.lb!=None:
if abs(point[node.col] - node.value[node.col]) < nearestValue:
if point[node.col]<node.value[node.col]:
traveltree(node.rb,point)
if point[node.col]>node.value[node.col]:
traveltree(node.lb,point) def searchtree(tree,aim):
global nearestPoint,nearestValue
#nearestPoint=None
nearestValue=float('inf')
traveltree(tree,aim)
return nearestPoint def dist(x1, x2): #欧式距离的计算
return ((np.array(x1) - np.array(x2)) ** 2).sum() ** 0.5
kdtree
python kd树 搜索 代码的更多相关文章
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- RobHess的SIFT代码解析之kd树
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- C# 通过KD树进行距离最近点的查找.
本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码.这也是我自己动手实现的第一个树形的数据结构.理解上难免会有偏差,敬请各位 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
随机推荐
- 【医学图像】3D Deep Leaky Noisy-or Network 论文阅读(转)
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原 ...
- java高级特性(3)--方法可变参数
1.特征:... 2.方法可变参数,必须是方法参数列表的最后一位. 3.一个方法只能有一个方法可变参数. 4.方法可变参数本质是一个数组. 5.调用时按照方法可变参数赋值,多余的实参被封装成一个数组, ...
- R 中的哪些命令或者包让你相见恨晚?--转载知乎
https://www.zhihu.com/question/24501195 节选: 看了这么多答案,觉得 Hadley Wickhamhad.co.nz 在R使用者的地位好高啊.其实我也觉得Had ...
- How to implement multiple constructor with different parameters in Scala
Using scala is just another road, and it just like we fall in love again, but there is some pain you ...
- Codeforces Round #359 (Div. 2) C. Robbers' watch 鸽巢+stl
C. Robbers' watch time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- PHP会话控制之如何正确设置session_name
定义: string session_name([string $name]) 说明: 在php.ini中配置为:session.name = PHPSESSID 在请求开始的时候,会话名称会被重置并 ...
- tensorflow 模型保存
1.首先 saver = tf.train.Saver(max_to_keep=1)新建一个saver,max_to_keep是说只保留最后一轮的训练结果 2.使用save方法保存模型 saver.s ...
- [洛谷U62358]求导函数
U62358 求导函数 题面 给出一个n次函数\(f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_0\)的各项系数\(a_n,a_{n-1}...a_1,a_0 ...
- Linux中pid_t类型为int类型
1. 查看man手册,找到pid_t,可以通过getpid函数来看 2. 打开sys/types.h 3. 打开bits/types.h 4. 打开bits/typesizes.h 找不到相关的头文件 ...
- jquery extend源码解析
$.extend(obj1,0bj2,{"name":"s","age":22}) //target 要拷贝到哪个对象上 // i 要执行拷 ...