Dijkstra实现最短路径
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXV=1000;
const int INF=100000000;
int n,m,s,G[MAXV][MAXV];
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV]={false};
void Dijkstra(int s){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int u=-1,MIN=INF;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF&&d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
}
}
}
}
int main(){
int u,v,w;
cin>>n>>m>>s;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>w;
G[u][v]=w;
}
Dijkstra(s);
for(int i=0;i<n;i++){
cout<<d[i]<<" ";
}
return 0;
}
邻接表实现
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=;
const int MAXV=;
int m,s,n,d[MAXV];//m个点n个边起点是s
bool vis[MAXV]={false};
struct Node{
int v,dis;
};
vector<Node>G[MAXV];
void dj(){
fill(d,d+MAXV,INF);
d[s]=;
for(int i=;i<m;i++){
int u=-,MAX=INF;
for(int j=;j<m;j++){
if(vis[j]==false&&d[j]<MAX){
u=j;
MAX=d[j];
}
}
if(u==-) return;
vis[u]=true;
for(int j=;j<G[u].size();j++){
int v=G[u][j].v;
if(vis[v]==false&&d[u]+G[u][j].dis<d[v]){
d[v]=d[u]+G[u][j].dis;//注意此处是G[u][j]而不是G[u][v]
}
}
}
}
int main(){
int uu,vv,w;
cin>>m>>n>>s;
for(int i=;i<n;i++){
cin>>uu>>vv>>w;
Node tp;
tp.dis=w;
tp.v=vv;
G[uu].push_back(tp);
}
dj();
for(int i=;i<m;i++){
cout<<d[i]<<" ";
}
return ;
}
测试:
6 8 0
0 1 1
0 3 4
0 4 4
1 3 2
2 5 1
3 2 2
3 4 3
4 5 3
代码解释:
void d(){
//初始化图
//将出发点到出发点的距离设为0
for(循环n次){//n表示顶点数
//设当前欲访问的顶点下标为u=-1;
//设所有点中到起点距离最短的那个点的路径长为MAX=100000000000;
for(循环n次){
if(第n个点没有被访问&&该点到起点的路径最短){
MAX=最短路径;
u=n;//记录该点,即该点已经被访问
}
}
if(u==-1) return;//所有点已经被访问,函数结束
//标记u点被访问
for(n次循环){
if(该点没有被访问&&该点到新被访问顶点u的距离小于原来路径){
//更新路径
}
}
}
}
视频解释:https://www.bilibili.com/video/av38254646/?redirectFrom=h5
时间复杂度=n*(n+n)
在实际解题中可能会出现多个权重的问题,直接的解题方法就是增加变量再重新划分逻辑,例如PAT A1003
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) – the number of cities (and the cities are numbered from 0 to N-1), M – the number of roads, C1 and C2 – the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output
For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output
2 4
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXV=510;
const int INF=10000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],num[MAXV],weight[MAXV],w[MAXV];
void dj(){
fill(d,d+MAXV,INF);
memset(num,0,sizeof(num));
memset(w,0,sizeof(w));
d[s]=0;
w[s]=weight[s];
num[s]=1;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
w[v]=w[u]+weight[v];
num[v]=num[u];
}else if(d[u]+G[u][v]==d[v]){
if(w[u]+weight[v]>w[v]){
w[v]=weight[v]+w[u];
}
num[v]+=num[u];
}
}
}
}
}
int main(){ cin>>n>>m>>s>>e;
for(int i=0;i<n;i++){
cin>>weight[i];
}
int u,v,p;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p;
G[v][u]=G[u][v]=p;
}
dj();
cout<<num[e]<<" "<<w[e];
return 0;
}
还有PAT A1030
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output:
0 2 3 3 40
增加变量的常规解法
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXV=510;
const int INF=100000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],cost[MAXV],weight[MAXV][MAXV],pre[MAXV];
void dj(){
fill(d,d+MAXV,INF);
fill(cost,cost+MAXV,INF);
cost[s]=0;
d[s]=0;
for(int i=0;i<n;i++)
pre[i]=i;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
//if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}else if(d[v]==d[u]+G[u][v]&&cost[u]+weight[u][v]<cost[v]){
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}
}
}
}
}
void f(int v){
if(v==s){
cout<<v<<" ";
return;
}
f(pre[v]);
cout<<v<<" ";
}
int main(){
cin>>n>>m>>s>>e;
int u,v,p,q;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p>>q; weight[v][u]=weight[u][v]=q;
G[v][u]=G[u][v]=p;
}
dj();
f(e);
cout<<d[e]<<" "<<cost[e];
return 0;
}
模板式DFS+dj
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int INF=100000000;
const int MAXV=510;
int d[MAXV],c[MAXV],G[MAXV][MAXV],cost[MAXV][MAXV];
bool vis[MAXV]={false};
int n,m,s,e,mincost=INF;
vector<int>pre[MAXV];
vector<int>temppath,path;
void dj(){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
MIN=d[j];
u=j;
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
pre[v].clear();
pre[v].push_back(u);
}else if(d[v]==d[u]+G[u][v]){
pre[v].push_back(u);
} }
}
}
}
void DFS(int v){
if(v==s){
temppath.push_back(v);
int tempcost=0;
for(int i=temppath.size()-1;i>0;i--){
int id=temppath[i],idnext=temppath[i-1];
tempcost+=cost[id][idnext];
}
if(tempcost<mincost){
mincost=tempcost;
path=temppath;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for(int i=0;i<pre[v].size();i++)
DFS(pre[v][i]);
temppath.pop_back();
}
int main(){
cin>>n>>m>>s>>e;
int a,b,c,dd;
fill(G[0],G[0]+MAXV*MAXV,INF);
fill(cost[0],cost[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>a>>b>>c>>dd;
G[a][b]=G[b][a]=c;
cost[a][b]=cost[b][a]=dd;
}
dj();
DFS(e);
for(int i=path.size()-1;i>=0;i--)
cout<<path[i]<<" ";
cout<<d[e]<<" "<<mincost;
}
关于该算法的题目和思想后续还会更新
Dijkstra实现最短路径的更多相关文章
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- Dijkstra求最短路径
单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...
- NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)
题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...
- POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)
题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...
- POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...
- Dijkstra求最短路径&例题
讲了半天好像也许maybe听懂了一点,先写下来233 先整理整理怎么存(开始绕) 最简单的是邻接矩阵存,但是开到10000*10000就MLE了,所以我们用链式前向星存(据说是叫这个名字吧) 这是个什 ...
- Dijkstra算法 - 最短路径算法
2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...
- POJ 2387 Til the Cows Come Home Dijkstra求最短路径
Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...
- Dijkstra算法——最短路径(转)
转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijkstra(迪杰斯 ...
随机推荐
- [GO]channel实现同步
goroutine运行在相同的地址空间,因此访问共享内存必须 做好同步.goroutine奉行通过通信来共享内存,而不是共享内存通信 它跟map一样,使用make来创建,它是一个引用 ,而不是值传递 ...
- Android开发adb环境配置
adb的全称为Android Debug Bridge,就是起到调试桥的作用. 在命令行cmd中打开adb,如果Android开发的环境配置有误,会出现如下错误提示: 解决方法,右键我的电脑-> ...
- java之常用的依赖文件pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- Hadoop的Windows伪分布式学习
解压hadoop-2.7.2.zip,不是tar.gz,前者是Windows所用的 解压到路径,设置环境变量 HADOOP_HOME=E:\hadoop-2.7.2\ HADOOP_USER_HOME ...
- 实用的chrome插件
有人说Chrome是世界上最好的浏览器,当然也会有不赞同.但不论怎样,工具而已,何必限制,任何一个用好了都能迅速提高我们的效率,不过还是推荐Chrome. 自然问题就变成:“为什么要用Chrome ...
- VS 和Visual Assist X快捷键(转)
Visual Assist X 最有用的快捷键 1.Alt + G: 在定义与声明之间互跳. 2.Alt + O: 在.h与.cpp之间互跳.(O是字母O,不是数字零) 3.Alt + Shift + ...
- delphi数组之菜鸟篇
数组是可以通过索引来引用的同类型数据的列表.按照存储空间的获取方式,Delphi支持的数组类型有两种,即静态数组和动态数组.所谓静态数组就是在声明时就已经确定大小的数组类型,而动态数组是指其大小在声明 ...
- [LeetCode 题解]: Valid Parentheses
Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...
- rabbitmqBat常用指令
激活 RabbitMQ's Management Pluginrabbitmq-plugins.bat enable rabbitmq_management 查看已有用户及用户的角色rabbitmqc ...
- mysql中判断记录是否存在方法比较【转】
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入. 我这里总结了判断记录是否存在的常用方法: sql语句:select count(*) from tablename ...