Dijkstra实现最短路径
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXV=1000;
const int INF=100000000;
int n,m,s,G[MAXV][MAXV];
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV]={false};
void Dijkstra(int s){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int u=-1,MIN=INF;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF&&d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
}
}
}
}
int main(){
int u,v,w;
cin>>n>>m>>s;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>w;
G[u][v]=w;
}
Dijkstra(s);
for(int i=0;i<n;i++){
cout<<d[i]<<" ";
}
return 0;
}
邻接表实现
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=;
const int MAXV=;
int m,s,n,d[MAXV];//m个点n个边起点是s
bool vis[MAXV]={false};
struct Node{
int v,dis;
};
vector<Node>G[MAXV];
void dj(){
fill(d,d+MAXV,INF);
d[s]=;
for(int i=;i<m;i++){
int u=-,MAX=INF;
for(int j=;j<m;j++){
if(vis[j]==false&&d[j]<MAX){
u=j;
MAX=d[j];
}
}
if(u==-) return;
vis[u]=true;
for(int j=;j<G[u].size();j++){
int v=G[u][j].v;
if(vis[v]==false&&d[u]+G[u][j].dis<d[v]){
d[v]=d[u]+G[u][j].dis;//注意此处是G[u][j]而不是G[u][v]
}
}
}
}
int main(){
int uu,vv,w;
cin>>m>>n>>s;
for(int i=;i<n;i++){
cin>>uu>>vv>>w;
Node tp;
tp.dis=w;
tp.v=vv;
G[uu].push_back(tp);
}
dj();
for(int i=;i<m;i++){
cout<<d[i]<<" ";
}
return ;
}
测试:
6 8 0
0 1 1
0 3 4
0 4 4
1 3 2
2 5 1
3 2 2
3 4 3
4 5 3
代码解释:
void d(){
//初始化图
//将出发点到出发点的距离设为0
for(循环n次){//n表示顶点数
//设当前欲访问的顶点下标为u=-1;
//设所有点中到起点距离最短的那个点的路径长为MAX=100000000000;
for(循环n次){
if(第n个点没有被访问&&该点到起点的路径最短){
MAX=最短路径;
u=n;//记录该点,即该点已经被访问
}
}
if(u==-1) return;//所有点已经被访问,函数结束
//标记u点被访问
for(n次循环){
if(该点没有被访问&&该点到新被访问顶点u的距离小于原来路径){
//更新路径
}
}
}
}
视频解释:https://www.bilibili.com/video/av38254646/?redirectFrom=h5
时间复杂度=n*(n+n)
在实际解题中可能会出现多个权重的问题,直接的解题方法就是增加变量再重新划分逻辑,例如PAT A1003
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) – the number of cities (and the cities are numbered from 0 to N-1), M – the number of roads, C1 and C2 – the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output
For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output
2 4
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXV=510;
const int INF=10000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],num[MAXV],weight[MAXV],w[MAXV];
void dj(){
fill(d,d+MAXV,INF);
memset(num,0,sizeof(num));
memset(w,0,sizeof(w));
d[s]=0;
w[s]=weight[s];
num[s]=1;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
w[v]=w[u]+weight[v];
num[v]=num[u];
}else if(d[u]+G[u][v]==d[v]){
if(w[u]+weight[v]>w[v]){
w[v]=weight[v]+w[u];
}
num[v]+=num[u];
}
}
}
}
}
int main(){ cin>>n>>m>>s>>e;
for(int i=0;i<n;i++){
cin>>weight[i];
}
int u,v,p;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p;
G[v][u]=G[u][v]=p;
}
dj();
cout<<num[e]<<" "<<w[e];
return 0;
}
还有PAT A1030
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output:
0 2 3 3 40
增加变量的常规解法
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXV=510;
const int INF=100000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],cost[MAXV],weight[MAXV][MAXV],pre[MAXV];
void dj(){
fill(d,d+MAXV,INF);
fill(cost,cost+MAXV,INF);
cost[s]=0;
d[s]=0;
for(int i=0;i<n;i++)
pre[i]=i;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
//if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}else if(d[v]==d[u]+G[u][v]&&cost[u]+weight[u][v]<cost[v]){
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}
}
}
}
}
void f(int v){
if(v==s){
cout<<v<<" ";
return;
}
f(pre[v]);
cout<<v<<" ";
}
int main(){
cin>>n>>m>>s>>e;
int u,v,p,q;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p>>q; weight[v][u]=weight[u][v]=q;
G[v][u]=G[u][v]=p;
}
dj();
f(e);
cout<<d[e]<<" "<<cost[e];
return 0;
}
模板式DFS+dj
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int INF=100000000;
const int MAXV=510;
int d[MAXV],c[MAXV],G[MAXV][MAXV],cost[MAXV][MAXV];
bool vis[MAXV]={false};
int n,m,s,e,mincost=INF;
vector<int>pre[MAXV];
vector<int>temppath,path;
void dj(){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
MIN=d[j];
u=j;
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
pre[v].clear();
pre[v].push_back(u);
}else if(d[v]==d[u]+G[u][v]){
pre[v].push_back(u);
} }
}
}
}
void DFS(int v){
if(v==s){
temppath.push_back(v);
int tempcost=0;
for(int i=temppath.size()-1;i>0;i--){
int id=temppath[i],idnext=temppath[i-1];
tempcost+=cost[id][idnext];
}
if(tempcost<mincost){
mincost=tempcost;
path=temppath;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for(int i=0;i<pre[v].size();i++)
DFS(pre[v][i]);
temppath.pop_back();
}
int main(){
cin>>n>>m>>s>>e;
int a,b,c,dd;
fill(G[0],G[0]+MAXV*MAXV,INF);
fill(cost[0],cost[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>a>>b>>c>>dd;
G[a][b]=G[b][a]=c;
cost[a][b]=cost[b][a]=dd;
}
dj();
DFS(e);
for(int i=path.size()-1;i>=0;i--)
cout<<path[i]<<" ";
cout<<d[e]<<" "<<mincost;
}
关于该算法的题目和思想后续还会更新
Dijkstra实现最短路径的更多相关文章
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- Dijkstra求最短路径
单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...
- NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)
题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...
- POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)
题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...
- POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...
- Dijkstra求最短路径&例题
讲了半天好像也许maybe听懂了一点,先写下来233 先整理整理怎么存(开始绕) 最简单的是邻接矩阵存,但是开到10000*10000就MLE了,所以我们用链式前向星存(据说是叫这个名字吧) 这是个什 ...
- Dijkstra算法 - 最短路径算法
2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...
- POJ 2387 Til the Cows Come Home Dijkstra求最短路径
Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...
- Dijkstra算法——最短路径(转)
转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijkstra(迪杰斯 ...
随机推荐
- rabbitMQ日常管理(转)
原文:http://blog.sina.com.cn/s/blog_790c59140102x5vk.html 一.网页登录方法 http://127.0.0.1:15672/ 用户名和密码默认为gu ...
- 网络编程释疑之:单台服务器上的并发TCP连接数可以有多少
曾几何时我们还在寻求网络编程中C10K问题的解决方案,但是现在从硬件和操作系统支持来看单台服务器支持上万并发连接已经没有多少挑战性了.我们先假设单台服务器最多只能支持万级并发连接,其实对绝大多数应用来 ...
- 团体程序设计天梯赛L2-002 链表去重 2017-03-22 18:12 25人阅读 评论(0) 收藏
L2-002. 链表去重 时间限制 300 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 给定一个带整数键值的单链表L,本题要求你编写程序,删除 ...
- Quartus中代码字体大小的调整方法
Quartus中代码大小的调整方法 网友 "一纸玫瑰"整理 第一步:点击Tools(工具) 第二步:点击Options(选项) 第三步:Text Editor(文本编辑)/Font ...
- K倍区间 蓝桥杯
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- (转)@RequestParam @RequestBody @PathVariable 等参数绑定注解详解
引言: 接上一篇文章,对@RequestMapping进行地址映射讲解之后,该篇主要讲解request 数据到handler method 参数数据的绑定所用到的注解和什么情形下使用: 简介: han ...
- [Erlang15]“hello world”与<<”hello world”>>的具体区别是什么?
参见 :http://learnyousomeerlang.com/buckets-of-sockets 为了加深理解,自译如下,若理解有误或更好的建议,请帮忙指出, :) Buckets of So ...
- ResorceGovernor--基础和Demo
资源调控器分为三部分:1:资源池,将资源CPU/MEMORY划分到不同的载体上2:负载组,承载负载并将负载映射到不同的资源池3: 分类函数,将不同回话映射到不同的负载组08提供两种预定义的系统资源池1 ...
- PostgreSQL按年月日分组
Select EXTRACT(year from cast(joindate as timestamp)) as Year, EXTRACT(month from cast(joindate as t ...
- 解决$ git clone fatal: Authentication failed
今天在使用git clone克隆项目的时候报如下错误: $ git clone XXXXXX Cloning into 'XXXX'... fatal: Authentication failed f ...