#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXV=1000;
const int INF=100000000;
int n,m,s,G[MAXV][MAXV];
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV]={false};
void Dijkstra(int s){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int u=-1,MIN=INF;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF&&d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
}
}
}
}
int main(){
int u,v,w;
cin>>n>>m>>s;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>w;
G[u][v]=w;
}
Dijkstra(s);
for(int i=0;i<n;i++){
cout<<d[i]<<" ";
}
return 0;
}

邻接表实现

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=;
const int MAXV=;
int m,s,n,d[MAXV];//m个点n个边起点是s
bool vis[MAXV]={false};
struct Node{
int v,dis;
};
vector<Node>G[MAXV];
void dj(){
fill(d,d+MAXV,INF);
d[s]=;
for(int i=;i<m;i++){
int u=-,MAX=INF;
for(int j=;j<m;j++){
if(vis[j]==false&&d[j]<MAX){
u=j;
MAX=d[j];
}
}
if(u==-) return;
vis[u]=true;
for(int j=;j<G[u].size();j++){
int v=G[u][j].v;
if(vis[v]==false&&d[u]+G[u][j].dis<d[v]){
d[v]=d[u]+G[u][j].dis;//注意此处是G[u][j]而不是G[u][v]
}
}
}
}
int main(){
int uu,vv,w;
cin>>m>>n>>s;
for(int i=;i<n;i++){
cin>>uu>>vv>>w;
Node tp;
tp.dis=w;
tp.v=vv;
G[uu].push_back(tp);
}
dj();
for(int i=;i<m;i++){
cout<<d[i]<<" ";
}
return ;
}

测试:

6 8 0

0 1 1

0 3 4

0 4 4

1 3 2

2 5 1

3 2 2

3 4 3

4 5 3

代码解释:

 void d(){
//初始化图
//将出发点到出发点的距离设为0
for(循环n次){//n表示顶点数
//设当前欲访问的顶点下标为u=-1;
//设所有点中到起点距离最短的那个点的路径长为MAX=100000000000;
for(循环n次){
if(第n个点没有被访问&&该点到起点的路径最短){
MAX=最短路径;
u=n;//记录该点,即该点已经被访问
}
}
if(u==-1) return;//所有点已经被访问,函数结束
//标记u点被访问
for(n次循环){
if(该点没有被访问&&该点到新被访问顶点u的距离小于原来路径){
//更新路径
}
}
}
}

  视频解释:https://www.bilibili.com/video/av38254646/?redirectFrom=h5

时间复杂度=n*(n+n)

在实际解题中可能会出现多个权重的问题,直接的解题方法就是增加变量再重新划分逻辑,例如PAT A1003

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) – the number of cities (and the cities are numbered from 0 to N-1), M – the number of roads, C1 and C2 – the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

Output

For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output

2 4

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXV=510;
const int INF=10000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],num[MAXV],weight[MAXV],w[MAXV];
void dj(){
fill(d,d+MAXV,INF);
memset(num,0,sizeof(num));
memset(w,0,sizeof(w));
d[s]=0;
w[s]=weight[s];
num[s]=1;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[u]+G[u][v]<d[v]){
d[v]=d[u]+G[u][v];
w[v]=w[u]+weight[v];
num[v]=num[u];
}else if(d[u]+G[u][v]==d[v]){
if(w[u]+weight[v]>w[v]){
w[v]=weight[v]+w[u];
}
num[v]+=num[u];
}
}
}
}
}
int main(){ cin>>n>>m>>s>>e;
for(int i=0;i<n;i++){
cin>>weight[i];
}
int u,v,p;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p;
G[v][u]=G[u][v]=p;
}
dj();
cout<<num[e]<<" "<<w[e];
return 0;
}

  还有PAT A1030

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

增加变量的常规解法
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXV=510;
const int INF=100000000;
bool vis[MAXV]={false};
int n,m,s,e,G[MAXV][MAXV],d[MAXV],cost[MAXV],weight[MAXV][MAXV],pre[MAXV];
void dj(){
fill(d,d+MAXV,INF);
fill(cost,cost+MAXV,INF);
cost[s]=0;
d[s]=0;
for(int i=0;i<n;i++)
pre[i]=i;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
//if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}else if(d[v]==d[u]+G[u][v]&&cost[u]+weight[u][v]<cost[v]){
cost[v]=cost[u]+weight[u][v];
pre[v]=u;
}
}
}
}
}
void f(int v){
if(v==s){
cout<<v<<" ";
return;
}
f(pre[v]);
cout<<v<<" ";
}
int main(){
cin>>n>>m>>s>>e;
int u,v,p,q;
fill(G[0],G[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>u>>v>>p>>q; weight[v][u]=weight[u][v]=q;
G[v][u]=G[u][v]=p;
}
dj();
f(e);
cout<<d[e]<<" "<<cost[e];
return 0;
}

  

模板式DFS+dj

#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int INF=100000000;
const int MAXV=510;
int d[MAXV],c[MAXV],G[MAXV][MAXV],cost[MAXV][MAXV];
bool vis[MAXV]={false};
int n,m,s,e,mincost=INF;
vector<int>pre[MAXV];
vector<int>temppath,path;
void dj(){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n;i++){
int MIN=INF,u=-1;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<MIN){
MIN=d[j];
u=j;
}
}
if(u==-1) return;
vis[u]=true;
for(int v=0;v<n;v++){
if(vis[v]==false&&G[u][v]!=INF){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
pre[v].clear();
pre[v].push_back(u);
}else if(d[v]==d[u]+G[u][v]){
pre[v].push_back(u);
} }
}
}
}
void DFS(int v){
if(v==s){
temppath.push_back(v);
int tempcost=0;
for(int i=temppath.size()-1;i>0;i--){
int id=temppath[i],idnext=temppath[i-1];
tempcost+=cost[id][idnext];
}
if(tempcost<mincost){
mincost=tempcost;
path=temppath;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for(int i=0;i<pre[v].size();i++)
DFS(pre[v][i]);
temppath.pop_back();
}
int main(){
cin>>n>>m>>s>>e;
int a,b,c,dd;
fill(G[0],G[0]+MAXV*MAXV,INF);
fill(cost[0],cost[0]+MAXV*MAXV,INF);
for(int i=0;i<m;i++){
cin>>a>>b>>c>>dd;
G[a][b]=G[b][a]=c;
cost[a][b]=cost[b][a]=dd;
}
dj();
DFS(e);
for(int i=path.size()-1;i>=0;i--)
cout<<path[i]<<" ";
cout<<d[e]<<" "<<mincost;
}

  

关于该算法的题目和思想后续还会更新

Dijkstra实现最短路径的更多相关文章

  1. 算法-迪杰斯特拉算法(dijkstra)-最短路径

    迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...

  2. Dijkstra求最短路径

    单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...

  3. NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)

    题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...

  4. POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)

    题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...

  5. POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...

  6. Dijkstra求最短路径&例题

    讲了半天好像也许maybe听懂了一点,先写下来233 先整理整理怎么存(开始绕) 最简单的是邻接矩阵存,但是开到10000*10000就MLE了,所以我们用链式前向星存(据说是叫这个名字吧) 这是个什 ...

  7. Dijkstra算法 - 最短路径算法

    2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...

  8. POJ 2387 Til the Cows Come Home Dijkstra求最短路径

    Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...

  9. Dijkstra算法——最短路径(转)

    转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijkstra(迪杰斯 ...

随机推荐

  1. 34 输入3个数a,b,c,按大小顺序输出

    题目:输入3个数a,b,c,按大小顺序输出 public class _034Sorting { public static void main(String[] args) { sorting(); ...

  2. OpenSSH免密码登录SSH2

    SSH2免密码登录OpenSSHhttp://blog.csdn.net/aquester/article/details/23836299 两个SSH2间免密码登录http://blog.csdn. ...

  3. 【小梅哥FPGA进阶教程】串口发送图片数据到SRAM在TFT屏上显示

    十五.串口发送图片数据到SRAM在TFT屏上显示 之前分享过rom存储图片数据在TFT屏上显示,该方法只能显示小点的图片,如果想显示TFT屏幕大小的图片上述方法rom内存大小不够.小梅哥给了个方案,利 ...

  4. [置顶] bzoj 1036 树的统计Count 点权值模板

    树链剖分 点权型可做模板,链路剖分的思想把点hash到线段树的上,然后可通过n*(log(n)*log(n))的复杂度在树上操作,在线段树上能操作的在链路上都能操作. #include<cstd ...

  5. oracle数据库中修改已存在数据的字段

    在oracle中,如果已经存在的数据的某些列,假如要更换类型的话,有的时候是比较麻烦的, 会出现:ORA-01439: column to be modified must be empty to c ...

  6. Linux常用开发指令

    gcc mysqltest.c -o mysqltest `mysql_config –cflags –libs`

  7. scvmm2008 错误 2921 0x8007054F

    这个错误是由于bits智能传输服务依赖的https 443端口被占用.443端口一般常用于银行.购物网站,是一种加密的http,一般是通过ssl安全套接字来加密的,但是ssl漏洞可能被木马病毒利用. ...

  8. robot中使用evaluate转化数据格式

    如果你使用robot却没有用过evaluate,那你将永远禁锢在框架中. json对象格式入参可以使用字典格式直接传入,但最近有一个接口测试的入参是一个json数组,在传参时总是提示请求参数不合法, ...

  9. django drf GenericAPIView和ListAPIView

    drf提供了更快捷的查询方法ListModelMixin+GenericAPIView,和ListAPIView 1.ListModelMixin+GenericAPIView from django ...

  10. mongodb工具类

    pom.xml文件增加Mongodb jar包 <dependency> <groupId>org.mongodb</groupId> <artifactId ...