【BZOJ】1044: [HAOI2008]木棍分割(二分+dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1044
如果只求最大的最小,,直接二分就行了。。。可是要求方案。。
好神!
我竟然想不到!
因为我们得到的答案已经是最大的最小了,那么我们只要在每一次切割的时候,保证连续的每一段不超过ans即可,这就是方案数!
orz
所以设d[i,j]表示前j个切了i次,那么d[i,j]=sum{d[i-1, k], sum[j]-sum[k]<=ans}
这个二维可以变成一维,sum[j]-sum[k]的k具有单调性,所以我们维护一下k就行了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005, MD=10007;
int n, a[N], sum[N], f[N], d[N], m, ans; bool check(int x) {
int tot=0, s=0;
for1(i, 1, n) {
if(a[i]>x) return false;
s+=a[i];
if(s>x) { s=a[i]; ++tot; }
if(tot>m) return false;
}
return true;
} int main() {
read(n); read(m);
int l=1, r=0;
for1(i, 1, n) read(a[i]), r+=a[i], sum[i]=sum[i-1]+a[i];
while(l<=r) {
int mid=(l+r)>>1;
if(check(mid)) r=mid-1;
else l=mid+1;
}
ans=r+1;
printf("%d", ans);
for1(i, 0, n) if(sum[i]<=ans) d[i]=1; else break;
for1(j, 1, m) {
int k=0;
f[0]=d[0];
for1(i, 1, n) f[i]=(f[i-1]+d[i])%MD;
for1(i, j+1, n) {
while(k<i && sum[i]-sum[k]>ans) ++k;
d[i]=(f[i-1]-f[k-1]+MD)%MD;
}
// for1(i, j+1, n) {
// for1(k, 0, i-1) if(sum[i]-sum[k]<=ans) d[i][j]=(d[i][j]+d[k][j-1]);
// }
}
printf(" %d\n", d[n]);
return 0;
}
Description
有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长度最大的一段长度最小. 并将结果mod 10007。。。
Input
输入文件第一行有2个数n,m. 接下来n行每行一个正整数Li,表示第i根木棍的长度.
Output
输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.
Sample Input
1
1
10
Sample Output
HINT
两种砍的方法: (1)(1)(10)和(1 1)(10)
数据范围
n<=50000, 0<=m<=min(n-1,1000).
1<=Li<=1000.
Source
【BZOJ】1044: [HAOI2008]木棍分割(二分+dp)的更多相关文章
- BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)
第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...
- [BZOJ 1044] [HAOI2008] 木棍分割 【二分 + DP】
题目链接:BZOJ 1044 第一问是一个十分显然的二分,贪心Check(),很容易就能求出最小的最大长度 Len . 第二问求方案总数,使用 DP 求解. 使用前缀和,令 Sum[i] 为前 i 根 ...
- BZOJ 1044: [HAOI2008]木棍分割
Description 求 \(n\) 根木棍长度为 \(L\) ,分成 \(m\) 份,使最长长度最短,并求出方案数. Sol 二分+DP. 二分很简单啊,然后就是方案数的求法. 状态就是 \(f[ ...
- 【bzoj1044】[HAOI2008]木棍分割 二分+dp
题目描述 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且 ...
- Luogu P2511 [HAOI2008]木棍分割 二分+DP
思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...
- 【BZOJ】1044: [HAOI2008]木棍分割 二分+区间DP
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1044 Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, ...
- bzoj 1044 [HAOI2008]木棍分割(二分+贪心,DP+优化)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1044 [题意] n根木棍拼到一起,最多可以切m刀,问切成后最大段的最小值及其方案数. ...
- bzoj 1044: [HAOI2008]木棍分割【二分+dp】
对于第一问二分然后贪心判断即可 对于第二问,设f[i][j]为已经到j为止砍了i段,转移的话从$$ f[i][j]=\sigema f[k][j-1] (s[j]-s[k-1]<=ans) 这里 ...
- BZOJ 1044: [HAOI2008]木棍分割 DP 前缀和优化
题目链接 咳咳咳,第一次没大看题解做DP 以前的我应该是这样的 哇咔咔,这tm咋做,不管了,先看个题解,再写代码 终于看懂了,卧槽咋写啊,算了还是抄吧 第一问类似于noip的那个跳房子,随便做 这里重 ...
- bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...
随机推荐
- MySQL 官方文档
MySQL 5.6 Reference Manual Preface and Legal Notices 1 General Information 2 Installing and Upgradin ...
- Spring 事务传播行为
事务传播行为 指定是Spring中一个事务方法调用另一个事务方法时.处理的行为 使用方式: @Transactional(propagation=Propagation.REQUIRED) 事务的使用 ...
- php 命令行方式运行时 几种传入参数的方式
1. url方式 $param = array(); if ($argc > 1) { parse_str ( $argv [1], $param ); foreach ( $param as ...
- 【TP3.2.3】微信网页授权--基类
非常好用的微信授权 基类:其他的微信权限类都可以继承至该类: <?php namespace Wechat\Controller; use Think\Controller; //微信接口基础类 ...
- Linux下SSH免密码登录(转)
搭建hadoop集群的时候一定会用到的就是SSH免密码登录 [hadoop@hadoop1 ~]$ ssh-keygen -t rsa Generating public/private rsa ke ...
- Android--全局变量 很好很强大
As you know, each Activity is also a Context, which is information about its execution environment i ...
- 使用WindowsAPI获取录音音频
本文实例介绍了使用winmm.h进行音频流的获取的方法,具体步骤如下: 一.首先需要包含以下引用对象 ? 1 2 3 #include <Windows.h> #include " ...
- Mysql 的位运算符详解,mysql的优先级
位运算是将给定的操作数转化为二进制后,对各个操作数每一位都进行指定的逻辑运算,得到的二进制结果转换为十进制数后就是位运算的结果.MySQL 5.0 支持6 种位运算符,如表4-4 所示. 可以发现,位 ...
- 跨服务器查询信息的sql
--跨服务器查询信息的sql: select * from openrowset( 'SQLOLEDB', '192.168.1.104'; 'sa'; '123.com',[AutoMonitorD ...
- 连接到 Linux 服务器时首先要运行的 5 个命令
作为一个系统管理员/SRE 工作 5 年后,我知道当我连接到一台 Linux 服务器时我首先应该做什么.这里有一系列关于服务器你必须了解的信息,以便你可以(在大部分时间里)更好的调试该服务器. 连上 ...