http://www.lydsy.com/JudgeOnline/problem.php?id=1621

这题用笔推一下就懂了的。。。。

当2|(n-k)时,才能分,否则不能分。

那么dfs即可。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } int ans, k;
void dfs(int n) {
if(n>k && !((n-k)&1)) {
int a=(n-k)>>1;
dfs(a); dfs(n-a);
}
else ++ans;
} int main() {
int n=getint(); read(k);
dfs(n);
print(ans);
return 0;
}

Description

    约 翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样 的).这时候,这一群奶牛可能会分成两群,分别沿着接下来的两条路继续走.如果她们再次走到三岔路口,那么仍有可能继续分裂成两群继续走.    奶牛的 分裂方式十分古怪:如果这一群奶牛可以精确地分成两部分,这两部分的牛数恰好相差K(1≤K≤1000),那么在三岔路口牛群就会分裂.否则,牛群不会分 裂,她们都将在这里待下去,平静地吃草.    请计算,最终将会有多少群奶牛在平静地吃草.

Input

两个整数N和K.

Output

最后的牛群数.

Sample Input

6 2

INPUT DETAILS:

There are 6 cows and the difference in group sizes is 2.

Sample Output

3

OUTPUT DETAILS:

There are 3 final groups (with 2, 1, and 3 cows in them).

6
/ \
2 4
/ \
1 3

HINT

6只奶牛先分成2只和4只.4只奶牛又分成1只和3只.最后有三群奶牛.

Source

【BZOJ】1621: [Usaco2008 Open]Roads Around The Farm分岔路口(dfs)的更多相关文章

  1. BZOJ 1621: [Usaco2008 Open]Roads Around The Farm分岔路口

    题目 1621: [Usaco2008 Open]Roads Around The Farm分岔路口 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 56 ...

  2. BZOJ 1621 [Usaco2008 Open]Roads Around The Farm分岔路口:分治 递归

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1621 题意: 约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土 ...

  3. bzoj 1621: [Usaco2008 Open]Roads Around The Farm分岔路口【dfs】

    模拟就行--讲道理这个时间复杂度为啥是对的??? #include<iostream> #include<cstdio> using namespace std; int k, ...

  4. [Usaco2008 Open]Roads Around The Farm分岔路口[水题]

    Description     约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样的).这时候,这一群奶牛 ...

  5. BZOJ1621: [Usaco2008 Open]Roads Around The Farm分岔路口

    1621: [Usaco2008 Open]Roads Around The Farm分岔路口 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 521  S ...

  6. [Usaco2008 Open]Roads Around The Farm分岔路口

    题目描述 约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样的).这时候,这一群奶牛可能会分成两群,分别沿 ...

  7. BZOJ 1605 [Usaco2008 Open]Crisis on the Farm 牧场危机:dp【找转移路径】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1605 题意: 平面直角坐标系中,有n个点,m个标记(坐标范围1~1000). 你可以发出口 ...

  8. BZOJ 1605 [Usaco2008 Open]Crisis on the Farm 牧场危机 DP

    题意:链接 方法: DP 解析: 第一眼搜索题,复杂度不同意dfs,并且牛的数量太多不能bfs,迭代更不可能,A*不会估价.可能记忆化? 等等记忆化我还搜个毛线- 直接改成DP就好了. 状态非常好想非 ...

  9. bzoj1621 / P2907 [USACO08OPEN]农场周围的道路Roads Around The Farm

    P2907 [USACO08OPEN]农场周围的道路Roads Around The Farm 基础dfs,按题意递归即可. #include<iostream> #include< ...

随机推荐

  1. Python 函数返回多值

    返回多值函数可以返回多个值吗?答案是肯定的.比如在游戏中经常需要从一个点移动到另一个点,给出坐标.位移和角度,就可以计算出新的坐标:# math包提供了sin()和 cos()函数,我们先用impor ...

  2. 安装SQL SERVER 2016 CTP (二)[多图]

    内容中包含 base64string 图片造成字符过多,拒绝显示

  3. 41、java与mysql乱码的问题

    解决方法一:(最重要的一种方法)你看下my.ini,有无 [MySQL] default-character-set=utf8 [client] default-character-set=utf8 ...

  4. python标准库 正则表达式(re包)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 正则表达式(regular expression)主要功能是从字符串(string)中通过特定的模式(pattern) ...

  5. 【微信开发】JS和PHP分别判断当前浏览器是否微信浏览器

    1.PHP端 //判断是否微信浏览器 -xzz1125 function is_weixin() { if (strpos($_SERVER['HTTP_USER_AGENT'], 'MicroMes ...

  6. Python-搭建Nginx+Django环境

    1.安装 flup 模块 下载:http://projects.unbit.it/downloads/uwsgi-latest.tar.gz 安装:python setup.py install 2. ...

  7. Ubuntu和windows文件共享问题

    ubuntu访问windows共享文件夹(ubuntu桌面系统):          最简单的方法,随便打开一个文件夹,按Ctrl+L,然后地址栏敲smb://xxx.xxx.xxx.xxx(wind ...

  8. Android设计模式系列(2)--SDK源码之观察者模式

    观察者模式,是一种非常常见的设计模式,在很多系统中随处可见,尤其是涉及到数据状态发生变化需要通知的情况下.本文以AbstractCursor为例子,展开分析.观察者模式,Observer Patter ...

  9. java 并发编程 list

     并发编程 Mark 以后看 http://cmsblogs.com/ http://www.jianshu.com/p/456b984c00b7

  10. 优化神器 beamoff

    http://files.cnblogs.com/files/yipu/beamoff.zip csdn上有下载:http://download.csdn.net/download/bytige/83 ...