D. Time to Raid Cowavans
time limit per test

4 seconds

memory limit per test

70 megabytes

input

standard input

output

standard output

As you know, the most intelligent beings on the Earth are, of course, cows. This conclusion was reached long ago by the Martian aliens, as well as a number of other intelligent civilizations from outer space.

Sometimes cows gather into cowavans. This seems to be seasonal. But at this time the cows become passive and react poorly to external stimuli. A cowavan is a perfect target for the Martian scientific saucer, it's time for large-scale abductions, or, as the Martians say, raids. Simply put, a cowavan is a set of cows in a row.

If we number all cows in the cowavan with positive integers from 1 to n, then we can formalize the popular model of abduction, known as the (a, b)-Cowavan Raid: first they steal a cow number a, then number a + b, then — number a + 2·b, and so on, until the number of an abducted cow exceeds n. During one raid the cows are not renumbered.

The aliens would be happy to place all the cows on board of their hospitable ship, but unfortunately, the amount of cargo space is very, very limited. The researchers, knowing the mass of each cow in the cowavan, made p scenarios of the (a, b)-raid. Now they want to identify the following thing for each scenario individually: what total mass of pure beef will get on board of the ship. All the scenarios are independent, in the process of performing the calculations the cows are not being stolen.

Input

The first line contains the only positive integer n (1 ≤ n ≤ 3·105) — the number of cows in the cowavan.

The second number contains n positive integer wi, separated by spaces, where the i-th number describes the mass of the i-th cow in the cowavan (1 ≤ wi ≤ 109).

The third line contains the only positive integer p — the number of scenarios of (a, b)-raids (1 ≤ p ≤ 3·105).

Each following line contains integer parameters a and b of the corresponding scenario (1 ≤ a, b ≤ n).

Output

Print for each scenario of the (a, b)-raid the total mass of cows, that can be stolen using only this scenario.

Please, do not use the %lld specificator to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams of the %I64d specificator.

Examples
input
3
1 2 3
2
1 1
1 2
output
6
4
input
4
2 3 5 7
3
1 3
2 3
2 2
output
9
3
10

题目大意:给你一个长度为n的序列w,求w[x] + w[x+y] + w[x+2y] + ... + w[x + py],其中x+py <= n

思路:

首先,我们可以知道,大于sqrt(n)的询问,我们暴力,那么复杂度就是sqrt(n),所以假设所有的询问都是>=sqrt(n)的,那么我们的复杂度最坏为n*sqrt(n)

假设如果所有的询问都不相同,如果单纯暴力的话,复杂度为n/1 + n/2 + n/3 + n/4 + n/5 + ... + n/n-1 + n/n,所以为n*ln(n)(证明自己去证吧)

那么,如果存在许多的询问的长度都相等,那么我们就分治的思想去解决。

对于>=sqrt(n),我们暴力即可

对于<sqrt(n)的,我们把它全部都放到一个vector里面去,定义vector<pair<int, int>> ve[i]来储存目前y=i的东西,然后就很好做了

详见2014年国家集训队论文《根号算法——不只是分块》

///bicat
//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = 3e5 + ;
/*
首先,对于大于sqrt(n)的,我们直接暴力
对于小于的,我们根据步数的大小,放到vector里面去,每次都进行暴力即可
*/
LL w[maxn], sum[maxn], ans[maxn];
vector<pair<int, int> > ve[maxn];
int n, q; int main(){
cin >> n;
for (int i = ; i <= n; i++){
scanf("%lld", w + i);
}
int block = sqrt(n) + ;
cin >> q;
for (int i = ; i <= q; i++){
int x, y; scanf("%d%d", &x, &y);
if (y >= block){
for (int j = x; j <= n; j += y){
ans[i] += w[j];
}
}
else {
ve[y].push_back(mk(i, x));
}
}
for (int i = ; i < block; i++){
if (ve[i].size()){
memset(sum, , sizeof(sum));
for (int j = n; j >= ; j--){
sum[j] = sum[j + i] + w[j];
}
for (int j = ; j < ve[i].size(); j++){
int id = ve[i][j].first, pos = ve[i][j].second;
ans[id] = sum[pos];
}
}
}
for (int i = ; i <= q; i++)
printf("%lld\n", ans[i]);
return ;
}

分治思想 特别常用 Codeforces Beta Round #80 (Div. 1 Only) D的更多相关文章

  1. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  2. Codeforces Beta Round #80 (Div. 1 Only) D. Time to Raid Cowavans 离线+分块

    题目链接: http://codeforces.com/contest/103/problem/D D. Time to Raid Cowavans time limit per test:4 sec ...

  3. Codeforces Beta Round #80 (Div. 1 Only) D. Time to Raid Cowavans 分块

    D. Turtles Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/103/problem/D ...

  4. Codeforces Beta Round #69 (Div. 2 Only)

    Codeforces Beta Round #69 (Div. 2 Only) http://codeforces.com/contest/80 A #include<bits/stdc++.h ...

  5. Codeforces Beta Round #25 (Div. 2 Only)

    Codeforces Beta Round #25 (Div. 2 Only) http://codeforces.com/contest/25 A #include<bits/stdc++.h ...

  6. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  7. Codeforces Beta Round #79 (Div. 2 Only)

    Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...

  8. Codeforces Beta Round #77 (Div. 2 Only)

    Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...

  9. Codeforces Beta Round #76 (Div. 2 Only)

    Codeforces Beta Round #76 (Div. 2 Only) http://codeforces.com/contest/94 A #include<bits/stdc++.h ...

随机推荐

  1. A8

    组员:陈锦谋 今日内容: PS学习.抠图.图标像素调整 明日计划: 继续小组内安排的任务 困难: 无

  2. Java GUI 点击按钮退出

    import java.awt.*; import java.awt.event.*; public class TestFrameTwo implements ActionListener { Fr ...

  3. spring mvc4 找不到静态文件js/css/html 404

    说明: http://localhost:8080 指向的目录是WEB-INF所在的目录,也就是说请求静态资源时都是从该根目录开始查找.建议将所有静态文件放到和WEB-INF同级的目录下. 以 htt ...

  4. java内存加载机制

    什么是java类加载? 类加载是指将.class类中的二进制数据存放到内存中,会在内存中的推中建立一个java.lang.String的引用对象来存放方法区的数据结构,而类中的数据会放到方法区中 类加 ...

  5. 主流的RPC框架有哪些

    RPC是远程过程调用的简称,广泛应用在大规模分布式应用中,作用是有助于系统的垂直拆分,使系统更易拓展.Java中的RPC框架比较多,各有特色,广泛使用的有RMI.Hessian.Dubbo等.RPC还 ...

  6. [C/C++] 虚函数机制

    转自:c++ 虚函数的实现机制:笔记 1.c++实现多态的方法 其实很多人都知道,虚函数在c++中的实现机制就是用虚表和虚指针,但是具体是怎样的呢?从more effecive c++其中一篇文章里面 ...

  7. mysql(五)查询缓存

    mysql的逻辑架构图如下: 当开启查询缓存时,mysql会将查询结果缓存到查询缓存区域,结果对应的key是使用查询语句,数据库名称,客户端协议的版本等因素算出的一个hash值. 在下次查询时,根据一 ...

  8. 【Python】python学习文件的序列化和反序列化

    json和pickle序列化和反序列化 json是用来实现不同程序之间的文件交互,由于不同程序之间需要进行文件信息交互,由于用python写的代码可能要与其他语言写的代码进行数据传输,json支持所有 ...

  9. solr服务器的查询过程

    SolrDispatchFilter的作用 This filter looks at the incoming URL maps them to handlers defined in solrcon ...

  10. BZOJ 1212 L语言(DP+字典树)

    求能被理解的最长前缀. 很显然的dp.令dp[i]=true,表示前缀i能理解.否则不能理解.那么dp[i+len]=dp[i]=true,当s[len]能匹配str[i,i+len]. 由于模式串长 ...