「THUWC 2017」随机二分图
「THUWC 2017」随机二分图
解题思路 :
首先有一个 \(40pts\) 的做法:
前 \(20pts\) 暴力枚举最终的匹配是怎样的,check一下计算方案数,后 \(20pts\) 令 \(f[s][i]\) 表示当前左边的点匹配到前 \(i\) 个,右边的点匹配状况是 \(s\) 时继续往下匹配方案数的期望,枚举与 \(i\) 相连的边转移即可。
对于剩下的 \(t=1,t=2\) 的情况,先和 \(t = 0\) 一样直接连 \((a1,b1), (a2,b2)\)。然后观察此时概率发生的偏差。
以 \(t=1\) 为例,只选 \((a1,b1)\) 或者只选 \((a2, b2)\) 时概率和正确情况一样都是 \(\frac{1}{2}\) 。但是如果两条边都选此时算的概率是 \(\frac{1}{4}\) ,而应该是 \(\frac{1}{2}\) ,所以还要补连一种转移同时选上四个点概率是 \(\frac{1}{4}\) ,根据期望的线性性,正确性显然。
对于 \(t=2\) 情况,和上面一样分析,发现对于同时选的情况多算了 \(\frac{1}{4}\) ,补连一条概率是 \(-\frac{1}{4}\) 的转移即可。
此时我们就不能按照 \(40pts\) 的方法DP了,需要设 \(f[s1][s2]\) 表示此时左边点匹配状况是 \(s1\),右边匹配状况是 \(s2\) ,继续向下匹配方案数的期望。但是为了不重,我们每次还是要为 \(s1\) 中编号最小为匹配的点安排匹配,那么这样状态数就是和 \(40pts\) 的转移同阶的,用一个map记忆化一下复杂度就是 \(O(n^22^n)\) 。
code
/*program by mangoyang*/
#pragma GCC optimize("Ofast", "inline")
#include<bits/stdc++.h>
#define inf ((int)(1e9))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int INV2 = 500000004, INV4 = 250000002, mod = 1e9 + 7;
map<int, int> f;
int a[300], b[300], n, m, cnt;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % mod)
if(b & 1) ans = 1ll * ans * a % mod;
return ans;
}
inline int dfs(int mask){
if(mask == (1 << (n << 1)) - 1) return 1;
if(f.count(mask)) return f[mask];
int now = 0, tmp = 0;
for(int i = n - 1; ~i; i--)
if(!((1 << i) & mask)) now = (1 << i);
for(int i = 1; i <= cnt; i++)
if((now & a[i]) && !(mask & a[i]))
(tmp += 1ll * dfs(mask | a[i]) * b[i] % mod) %= mod;
return f[mask] = tmp;
}
int main(){
read(n), read(m);
for(int i = 1, op, x, y; i <= m; i++){
read(op), read(x), read(y), x--, y--;
int tmp = (1 << x) | (1 << y + n);
a[++cnt] = tmp, b[cnt] = INV2;
if(op){
read(x), read(y), x--, y--;
a[++cnt] = (1 << x) | (1 << y + n), b[cnt] = INV2;
if(tmp & ((1 << x) | (1 << y + n))) continue;
tmp |= (1 << x) | (1 << y + n);
a[++cnt] = tmp, b[cnt] = op == 1 ? INV4 : -INV4 + mod;
}
}
cout << 1ll * dfs(0) * Pow(2, n) % mod << endl;
return 0;
}
「THUWC 2017」随机二分图的更多相关文章
- @loj - 2290@ 「THUWC 2017」随机二分图
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个左右各 n 个点的二分图,图中的边会按照一定的规律随机出现. ...
- 【LOJ】#2290. 「THUWC 2017」随机二分图
题解 看了一眼觉得是求出图对图统计完美匹配的个数(可能之前做过这样模拟题弃疗了,一直心怀恐惧... 然后说是统计一下每种匹配出现的概率,也就是,当前左边点匹配状态为S,右边点匹配状态为T,每种匹配出现 ...
- LOJ 2288「THUWC 2017」大葱的神力
LOJ 2288「THUWC 2017」大葱的神力 Link Solution 比较水的提交答案题了吧 第一个点爆搜 第二个点爆搜+剪枝,我的剪枝就是先算出 \(mx[i]\) 表示选取第 \(i \ ...
- 「LOJ 2289」「THUWC 2017」在美妙的数学王国中畅游——LCT&泰勒展开
题目大意: 传送门 给一个动态树,每个节点上维护一个函数为$f(x)=sin(ax+b)$.$f(x)=e^{ax+b}$.$f(x)=ax+b$中的一个. 支持删边连边,修改节点上函数的操作. 每次 ...
- 「THUWC 2017」在美妙的数学王国中畅游
这个题目很明显在暗示你要用泰勒展开. 直接套上去泰勒展开的式子,精度的话保留12项左右即可. 分别维护每一项的和,可能比较难写吧. 然后强行套一个LCT就没了.
- 【LOJ】#2289. 「THUWC 2017」在美妙的数学王国中畅游
题解 我们发现,题目告诉我们这个东西就是一个lct 首先,如果只有3,问题就非常简单了,我们算出所有a的总和,所有b的总和就好了 要是1和2也是多项式就好了--其实可以!也就是下面泰勒展开的用处,我们 ...
- @loj - 2289@「THUWC 2017」在美妙的数学王国中畅游
目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个点编号 0 到 n-1,每个点有一个从 [0,1] 映射到 ...
- @loj - 2288@「THUWC 2017」大葱的神力
目录 @description@ @solution@ @data - 1@ @data - 2@ @data - 3@ @data - 4@ @data - 5@ @data - 6@ @data ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
随机推荐
- mysql 使用shell时出现 ERROR 2006 (HY000): MySQL server has gone away 解决方法
ERROR (HY000): MySQL server has gone away No connection. Trying to reconnect... Connection Current d ...
- /i,/m,/s,/x,/A,/s,/U,/x,/j,/u 等正则修饰符用法~
i (PCRE_CASELESS) 如果设置了这个修饰符,模式中的字母会进行大小写不敏感匹配. m (PCRE_MULTILINE) 默认情况下,PCRE 认为目标字符串是由单行字符组成的(然而实际上 ...
- 【洛谷 P2604】 [ZJOI2010]网络扩容(最大流,费用流)
题目链接 第一问就是简单的最大流. 第二问,保留第一问求完最大流的残量网络. 然后新建一个源点,向原源点连一条流量为k,费用为0的边. 然后所有边重新连一起(原来的边保留),费用为题目所给,最小费用即 ...
- POJ 3734 Blocks (矩阵快速幂)
题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...
- 6.MySQL简介
MySQL简介 ·点击查看MySQL官方网站 ·MySQL是一个关系型数据库管理系统,由瑞典MySQLAB公司开发,后来被Sun公司收购,Sun公司后来又被Oracle公司收购,目前属于facle旗下 ...
- phpmywind调用方法大全
头部文件调用 <?php require_once('header.php'); ?> 底部文件调用 <?php require_once('footer.php'); ?> ...
- 选择问题(选择数组中第K小的数)
由排序问题可以引申出选择问题,选择问题就是选择并返回数组中第k小的数,如果把数组全部排好序,在返回第k小的数,也能正确返回,但是这无疑做了很多无用功,由上篇博客中提到的快速排序,稍稍修改下就可以以较小 ...
- Linux内存高,触发oom-killer问题解决
最近遇到两起Linux的内存问题,其一是触发了oom-killer导致系统挂 1. 首先确认该系统的版本是32位 ? #uname -a Linux alarm 2.6.9-67.ELsmp #1 S ...
- Python设计模式中单例模式的实现及在Tornado中的应用
单例模式的实现方式 将类实例绑定到类变量上 class Singleton(object): _instance = None def new(cls, *args): if not isinstan ...
- 关于angular导入第三方库的问题
angular-cli使用webpack来将模块打包,在这里配置的scripts和styles会被打包成script.bundle.js和styles.bundle.js文件加载到前台页面. 这样就可 ...