http://poj.org/problem?id=3533

变成三维的nim积。。前面hdu那个算二维nim积的题的函数都不用改,多nim积一次就过了。。。longlong似乎不必要但是还是加上了

代码

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<map>
#include<ctime>
using namespace std;
long long n;
long long sg[][]={};
long long f(long long,long long);
long long g(long long x,long long y){
if(sg[x][y]!=-)return sg[x][y];
if(!x)return sg[x][y]=<<y;
if(!y)return sg[x][y]=<<x;
long long ans=,k=,t;
long long x1=x,y1=y;
while(x||y){
t=<<k;
if((x^y)&){
ans*=t;
}
x>>=;y>>=;k<<=;
}
k=;x=x1;y=y1;
while(x||y){
t=<<k;
if((x&y)&){
ans=f(ans,t/*);
}
x>>=;y>>=;k<<=;
}return sg[x1][y1]=ans;
}
long long f(long long x,long long y){
if(!x||!y)return ;
if(x==)return y;
if(y==)return x;
long long ans=;
for(long long i=x,a=;i;i>>=,a++){
if(!(i&))continue;
for(long long j=y,b=;j;j>>=,b++){
if(!(j&))continue;
ans^=g(a,b);
}
}return ans;
}
int main(){
memset(sg,-,sizeof(sg));
while(~scanf("%lld",&n)){
long long ans=,x,y,z;
for(long long i=;i<=n;i++){
scanf("%lld%lld%lld",&x,&y,&z);
ans^=f(z,f(x,y));
}
if(ans)printf("No\n");
else printf("Yes\n");
}
return ;
}

POJ 3553 Light Switching Game 博弈论 nim积 sg函数的更多相关文章

  1. 博弈论基础之sg函数与nim

    在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...

  2. POJ 3533 Light Switching Game(三维Nim积)题解

    思路:三维Nim积 代码: #include<set> #include<map> #include<stack> #include<cmath> #i ...

  3. HDU 3404 Switch lights 博弈论 nim积

    http://acm.hdu.edu.cn/showproblem.php?pid=3404 题目 http://www.doc88.com/p-5098170314707.html 论文 nim积在 ...

  4. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  5. 博弈论初步(SG函数)

    讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...

  6. hdu 5795 A Simple Nim 博弈sg函数

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Pro ...

  7. HDU 3032 Nim or not Nim? (sg函数)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. POJ.1704.Georgia and Bob(博弈论 Nim)

    题目链接 \(Description\) 一个1~INF的坐标轴上有n个棋子,给定坐标Pi.棋子只能向左走,不能跨越棋子,且不能越界(<1).两人每次可以将任意一个可移动的棋子向左移动一个单位. ...

  9. POJ 2311 Cutting Game(Nim博弈-sg函数/记忆化搜索)

    Cutting Game 题意: 有一张被分成 w*h 的格子的长方形纸张,两人轮流沿着格子的边界水平或垂直切割,将纸张分割成两部分.切割了n次之后就得到了n+1张纸,每次都可以选择切得的某一张纸再进 ...

随机推荐

  1. 【BZOJ】4316: 小C的独立集 静态仙人掌

    [题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...

  2. Html5学习4

    1.Html5  Web储存 概念:使用HTML5可以在本地存储用户的浏览数据.早些时候,本地存储使用的是 cookie.但是Web 存储需要更加的安全与快速. 这些数据不会被保存在服务器上,但是这些 ...

  3. HDU 1172 猜数字 (模拟)

    题目链接 Problem Description 猜数字游戏是gameboy最喜欢的游戏之一.游戏的规则是这样的:计算机随机产生一个四位数,然后玩家猜这个四位数是什么.每猜一个数,计算机都会告诉玩家猜 ...

  4. 4-Python数据类型之元组-字符串

    目录 1 元组概念 1.1 元祖的特点 1.2 元组的定义 1.3 元组的访问 1.4 元组的查询 2 命名元组 3 字符串 3.1 字符串的基本操作 3.1.1 字符串的访问 3.1.2 字符串的拼 ...

  5. go标识符、变量、常量

    标识符 标识符是用来表示Go中的变量名或者函数名,以字母或_开头.后可跟着字母.数字. _ 关键字 关键字是Go语言预先定义好的,有特殊含义的标识符. 变量 1. 语法:var identifier ...

  6. github--403错误

    错误信息如下: $ git push origin master error: The requested URL returned error: while accessing https://gi ...

  7. ActiveMQ-Prefetch机制和constantPendingMessageLimitStrategy

    首先简要介绍一下prefetch机制.ActiveMQ通过prefetch机制来提高性能,这意味这 客户端的内存里可能会缓存一定数量的消息.缓存消息的数量由prefetch limit来控 制.当某个 ...

  8. Linux文件访问流程及磁盘inode和block总结

    Linux文件访问流程 inode是文件的唯一标识,文件名和inode的对应关系存放在上一级目录的block中:inode里有指向文件block的指针和文件的属性,从而通过block获得文件数据. 磁 ...

  9. WireShark出现The NPF driver isn't running的问题

    昨天开始尝试装上了wireshark网络监视软件,可是今天打开去总是出现“The NPF driver isn't running.You may have trouble capturing or ...

  10. BeanUtils简化数据封装

    BeanUtils主要用来封装JavaBean的. 1.什么是JavaBean JavaBean指的是标准的类. 要求: 1. 类必须被public修饰2. 必须提供空参的构造器3. 成员变量必须使用 ...