2427: [HAOI2010]软件安装

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1987  Solved: 791
[Submit][Status][Discuss]

Description

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

Input

第1行:N, M  (0<=N<=100, 0<=M<=500)
      第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )
      第3行:V1, V2, ..., Vi, ..., Vn  (0<=Vi<=1000 )
      第4行:D1, D2, ..., Di, ..., Dn(0<=Di<=N, Di≠i )

Output

一个整数,代表最大价值。

Sample Input

3 10
5 5 6
2 3 4
0 1 1

Sample Output

5

HINT

Source

这么简单的题竟然做了三个小时?

环套树DP,为了方便直接Tarjan缩点然后跑树形DP即可。至于多叉树转二叉树这个方法完全不需要用上,直接做树上背包即可。

注意:除非卡常时,不要再用~i表示i>=0了,这样无法处理i<0的情况。

坚决避免低级错误!

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define For(i,x) for (int i=h[x]; i; i=nxt[i])
using namespace std; const int N=;
int n,m,scc,cnt,tim,top,h[N<<],ind[N],w[N],v[N],d[N],wei[N],val[N];
int bel[N],dp[N][N],stk[N],inq[N],dfn[N],low[N],to[N<<],nxt[N<<]; void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void tarjan(int x){
low[x]=dfn[x]=++tim; inq[x]=; stk[++top]=x;
For(i,x){
int k=to[i];
if (!dfn[k]) tarjan(k),low[x]=min(low[x],low[k]);
else if (inq[k]) low[x]=min(low[x],dfn[k]);
}
if (dfn[x]==low[x]){
int t; scc++;
do{ t=stk[top--]; inq[t]=; bel[t]=scc; }while (t!=x);
}
} void dfs(int x){
rep(i,wei[x],m) dp[x][i]=val[x];
For(i,x){
int k=to[i]; dfs(k);
for (int j=m-wei[x]; j>=; j--)
rep(q,,j)
dp[x][j+wei[x]]=max(dp[x][j+wei[x]],dp[x][j+wei[x]-q]+dp[k][q]);
}
} int main(){
scanf("%d%d",&n,&m); scc=n;
rep(i,,n) scanf("%d",&w[i]);
rep(i,,n) scanf("%d",&v[i]);
rep(i,,n) { scanf("%d",&d[i]); if (d[i]) add(d[i],i); }
rep(i,,n) if (!dfn[i]) tarjan(i);
rep(i,,n){
wei[bel[i]]+=w[i]; val[bel[i]]+=v[i];
if (bel[i]!=bel[d[i]] && d[i]) add(bel[d[i]],bel[i]),ind[bel[i]]++;
}
rep(i,n+,scc) if (!ind[i]) add(scc+,i);
dfs(scc+); printf("%d\n",dp[scc+][m]);
return ;
}

[BZOJ2427][HAOI2010]软件安装(Tarjan+DP)的更多相关文章

  1. bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1053  Solved: 424[Submit][Statu ...

  2. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  3. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  4. [BZOJ2427][HAOI2010]软件安装(tarjan+树形DP)

    如果依赖关系出现环,那么对于一个环里的点,要么都选要么都不选, 所以每个环可以当成一个点,也就是强连通分量 然后就可以构造出一颗树,然后树形背包瞎搞一下就行了 注意要搞一个虚拟节点当根节点 Code ...

  5. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

  6. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

  7. 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包

    [BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...

  8. 【BZOJ-2427】软件安装 Tarjan + 树形01背包

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 960  Solved: 380[Submit][Status ...

  9. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

随机推荐

  1. js面向对象的几种常见写法

    下面是一个简单的js对象:定义Circle类,拥有成员变量r,常量PI和计算面积的成员函数area(),常用为第一种和第三种. 1.工厂方式 var Circle = function() { var ...

  2. wepy开发小程序 大坑....本地调试ok,小程序上传体验版 组件出现问题

    如果你碰到的上述问题(本地调试ok,小程序上传体验版 各种莫名其妙的问题-卡死-组件属性失效-$apply()不起作用) 您需要关闭 微信开发者工具中: 1.微信开发者工具-->项目--> ...

  3. SDUT 3928

    Description C~K 和 PBH 经常玩一个游戏.游戏规则如下:现给定一个 n*n 的棋盘,一个石头被放在棋盘的左上角. 他们轮流移动石头.每一回合,两个人只能把石头向上,下,左,右四个方向 ...

  4. sublime出现卡顿的现象

    这几天,用sublime总是写一个代码就卡顿,卡卡卡,,,,要死的~ 最后,才发现是因为安装了一个插件:GitGutter插件,所以,小伙伴们请跟上我的节奏~~~~~ (1)Ctrl + Shift ...

  5. TinyOS 代码分析

    1.Basestation案例   位于/opt/tinyos-main-master/apps/Basetation 1.1本例的顶层结构图: 1.2软件实现流程 1) uartIn,uartOut ...

  6. python之supervisor进程管理工具

    supervisor是python写的一个管理进程运行的工具,可以很方便的监听.启动.停止.重启一个或多个进程:有了supervisor后,就不用字节写启动和监听的shell脚本了,非常方便. sup ...

  7. 判断Selenium加载完成

    How do you make Selenium 2.0 wait for the page to load? You can also check pageloaded using followin ...

  8. python继承问题

    python构造函数:__init__(): 如果子类定义了自己的__init__构造方法函数,当子类的实例对象被创建时,子类只会执行自己的__init__方法函数,如果子类未定义自己的构造方法函数, ...

  9. 最全Pycharm教程(26)——Pycharm搜索导航之文件名、符号名搜索(转)

    1.准备一个工程 向你的工程中添加一个Python文件,并输入一些源码,例如: 2.转到对应文件.类.符号 Pycharm提供的一个很强力的功能就是能够根据名称跳转到任何文件.类.符号所在定义位置. ...

  10. 9. Swarm mode