测试

  • 晚上考试,是 \(SCOI\ 2016\ Day\ 2\) 的题目.

妖怪

  • 由于之前在洛谷上用三分水过去了,就很 \(naive\) 地打了一个三分就跑了.获得 \(10\) 分好成绩.
  • 记 \(x=atk,y=dnf,k=\frac b a\) ,推下式子,有 \(strength(a,b)=x+y+x*k+y*\frac 1 k\).
  • 注意到有一个我忘了的结论和这个形式很相似:过定点 \((x,y)\) ,斜率为 \(k\) 的直线在 \(x,y\) 轴上的截距之和为 \(x+y-x*k-y*\frac 1 k\).
  • 于是改一下定义,记 \(k=-\frac b a<0\) ,则 \(strength(a,b)\) 即为截距之和.那么对于一个确定的斜率 \(k\) ,使得截距之和最大的那个点一定在凸包上.
  • 于是先求一个凸包,再对凸包上每个点求一次可取的最小值即得答案.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=1e6+10;
int n;
int atk[MAXN],dnf[MAXN];
const double eps=1e-8;
struct v2{
double x,y;
v2(double x=0,double y=0):x(x),y(y){}
v2 operator + (const v2 &rhs) const
{
return v2(x+rhs.x,y+rhs.y);
}
v2 operator - (const v2 &rhs) const
{
return v2(x-rhs.x,y-rhs.y);
}
inline double operator * (const v2 &rhs) const
{
return x*rhs.y-y*rhs.x;
}
double angle()
{
return atan2(y,x);
}
bool operator < (const v2 &rhs) const
{
return x==rhs.x?y<rhs.y:x<rhs.x;
}
v2 operator ^ (const double &lambda) const
{
return v2(x*lambda,y*lambda);
}
double slop()
{
return y/x;
}
};
double calc(double k,v2 p)
{
return p.x+p.y-k*p.x-p.y/k;
}
v2 p[MAXN],stk[MAXN],origin;
int tp=0;
int cmp(v2 a,v2 b)
{
double a1=(a-origin).angle();
double a2=(b-origin).angle();
return a1==a2?a.x<b.x:a1<a2;
}
void ConvexHull()
{
sort(p+1,p+1+n);
for(int i=n;i>=1;--i)
{
while(tp>=2 && (stk[tp]-stk[tp-1])*(p[i]-stk[tp])<=0)
--tp;
stk[++tp]=p[i];
}
}
int main()
{
// freopen("monster.in","r",stdin);
// freopen("monster.out","w",stdout);
n=read();
for(int i=1; i<=n; ++i)
{
atk[i]=read(),dnf[i]=read();
p[i]=v2(dnf[i],atk[i]);
}
ConvexHull();
double ans=2e9;
for(int i=1;i<=tp;++i)
{
double k1=(i==tp?0:(stk[i]-stk[i+1]).slop());
double k2=(i==1?-2e9:(stk[i]-stk[i-1]).slop());
double k=-sqrt(1.0*stk[i].y/stk[i].x);
if(k1>=k && k>=k2)
ans=min(ans,calc(k,stk[i]));
if(i!=tp && stk[i].y>stk[i+1].y)
break;
if(i!=tp)
ans=min(ans,calc(k1,stk[i]));
}
printf("%.4lf\n",ans);
return 0;
}

美味

  • 这题之前写过虽然写得很丑,用主席树搞一搞即可,应该是相对最简单的.

围棋

  • 考场上妄图用一些奇奇怪怪的 \(kmp\ +​\)容斥乱搞,无果,寻病终,获得 \(10​\) 分好成绩.

test20190308的更多相关文章

随机推荐

  1. Exception in thread "main" redis.clients.jedis.exceptions.JedisConnectionException: java.net.ConnectException: Connection refused (Connection refused)

    一.linux中配置redis,使用java连接测试时报错: Exception in thread "main" redis.clients.jedis.exceptions.J ...

  2. codeforces781D Axel and Marston in Bitland

    题目链接:codeforces781D 正解:$bitset$+状压$DP$ 解题报告: 考虑用$f[t][0.1][i][j]$表示从$i$出发走了$2^t$步之后走到了$j$,且第一步是走的$0$ ...

  3. shell中的常用通配符,字符类

    因为 shell 频繁 地使用文件名,shell 提供了特殊字符来帮助你快速指定一组文件名.这些特殊字符叫做通配符. 通配符         意义 * 匹配任意多个字符(包括零个或一个) ? 匹配任意 ...

  4. angular 当使用ng-repeat 时出现 $$hashKey的键值对

    小问题 把: ng-repeat="item in items " 改成 : ng-repeat="item in items track by $index"

  5. MySQL表类型MyISAM/InnoDB的区别(解决事务不回滚的问题)

    MyISAM:这个是默认类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Access Method (有索引的顺序访问方法) 的缩写,它是存储记录和文件的标准方法.与 ...

  6. jquery 表格自动拆分(方便打印)插件-printTable

    /** * jquery 表格打印插件 * * 作者: LiuJunGuang * 日期:2013年6月4日 * 分页样式(需要自定义): * @media print { * .pageBreak ...

  7. phalcon: 解决php7/phalcon3.2以上版本,不支持oracle数据库的方法

    解决php7/phalcon3.2以上版本,不支持oracle数据库的方法 phalcon3.2(3.0以上)版本不支持oracle的方法. https://github.com/phalcon/in ...

  8. Jenkins的安装和使用

    1.可以参考W3C----https://www.w3cschool.cn/jenkins/jenkins-5h3228n2.html 两种方式安装Jenkins a.安装包 b.Jenkins.wa ...

  9. java和python互相调用

      java和python互相调用  作者:xuaijun  日期:2017.1.1 python作为一种脚本语言,大量用于测试用例和测试代码的编写,尤其适用于交互式业务场景.实际应用中,很多网管系统 ...

  10. Vue打包上线部署

    一.路径问题 1.脚手架+webpack打包通过npm run build,但是后台tomcat部署上线的时候,会衍生出一些问题,比如,路径问题(因为在项目中,我们使用了绝对路径,这里必须要使用相对路 ...