FFT模板 生成函数 原根 多项式求逆 多项式开根
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define maxn 1000005
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
double pi=acos(-1.0);
struct complex {
double x,y;
complex (double xx=,double yy=) {x=xx;y=yy;}
complex operator +(const complex b) const {return complex(x+b.x,y+b.y);}
complex operator -(const complex b) const {return complex(x-b.x,y-b.y);}
complex operator *(const complex b) const {return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}a[maxn],b[maxn];
int n,m;
int limit=,l,pos[maxn];
void FFT(complex *A,int tp) {
for(int i=;i<limit;i++) if(i<pos[i]) swap(A[i],A[pos[i]]);
for(int mid=;mid<limit;mid<<=) {
complex wn(cos(pi/mid),tp*sin(pi/mid));
for(int R=mid<<,j=;j<limit;j+=R) {
complex w(,);
for(int k=;k<mid;k++,w=w*wn) {
complex x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y;
A[j+mid+k]=x-y;
}
}
}
return ;
}
int main() {
n=read(),m=read();
for(int i=;i<=n;i++) a[i].x=read();
for(int i=;i<=m;i++) b[i].x=read();
while(limit<=n+m) limit<<=,l++;
for(int i=;i<limit;i++) pos[i]=(pos[i>>]>>)|((i&)<<(l-));
FFT(a,);
FFT(b,);
for(int i=;i<limit;i++) a[i]=a[i]*b[i];
FFT(a,-);
for(int i=;i<=n+m;i++) printf("%d ",(int)(a[i].x/limit+0.5));
}
FFT
生成函数
小A有ai个价值为Ai的物品,小B有bi个价值为Ai的物品,求用两个组成价值为ci的方案数
生成函数可以解决上面的这个问题,构造两个多项式,第X的Ai次方项的系数表示价值为i的物品有多少个,对两个人分别构造,乘在一起的多项式就代表所有的方案数。
原根
定义P的原根为满足
的整数g。
NTT
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define maxn 4000001
#define mod 998244353
#define ll long long
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
ll a[maxn],b[maxn],pos[maxn];
ll n,m,limit=,l,g=;
ll power(ll x,ll y) {
ll ans=;
while(y) {
if(y&) ans*=x,ans%=mod;
x*=x,x%=mod;y>>=;
}
return ans;
}
void NTT(ll *A,int tp) {
for(int i=;i<limit;i++) if(i<pos[i]) swap(A[i],A[pos[i]]);
for(int mid=;mid<limit;mid<<=) {
ll wn=power(g,(mod-)/(mid<<));
if(tp==-) wn=power(wn,mod-);
for(int j=;j<limit;j+=(mid<<)) {
ll w=;
for(int k=;k<mid;k++,w*=wn,w%=mod) {
ll x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y;A[j+k]=(A[j+k]%mod+mod)%mod;
A[j+mid+k]=x-y;A[j+mid+k]=(A[j+mid+k]%mod+mod)%mod;
}
}
}
if(tp==-) {
ll ny=power(limit,mod-);
for(int i=;i<limit;i++) A[i]*=ny,A[i]=(A[i]%mod+mod)%mod;
}
}
int main() {
n=read(),m=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=m;i++) b[i]=read();
while(limit<=n+m) limit<<=,l++;
for(int i=;i<limit;i++) pos[i]=(pos[i>>]>>)|((i&)<<(l-));
NTT(a,);
NTT(b,);
for(int i=;i<limit;i++) a[i]=a[i]*b[i],a[i]=(a[i]%mod+mod)%mod;
NTT(a,-);
for(int i=;i<=n+m;i++) printf("%lld ",a[i]);
}
NTT
多项式求逆
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
#define mod 998244353
#define maxn 1000000
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
ll g=,limit=,l,n;
ll a[maxn],b[maxn],pos[maxn],c[maxn];
ll power(ll x,ll y) {
ll ans=;
while(y) {
if(y&) ans*=x,ans%=mod;
x*=x,x%=mod;y>>=;
}
return ans;
}
void NTT(ll *A,int tp) {
for(int i=;i<limit;i++) if(i<pos[i]) swap(A[i],A[pos[i]]);
for(int mid=;mid<limit;mid<<=) {
ll wn=power(g,(mod-)/(mid<<));
if(tp==-) wn=power(wn,mod-);
for(int j=;j<limit;j+=(mid<<)) {
ll w=;
for(int k=;k<mid;k++,w*=wn,w%=mod) {
ll x=A[j+k],y=w*A[j+mid+k]%mod;
A[j+k]=x+y;A[j+k]=(A[j+k]%mod+mod)%mod;
A[j+mid+k]=x-y;A[j+mid+k]=(A[j+mid+k]%mod+mod)%mod;
}
}
}
if(tp==-) {
ll ny=power(limit,mod-);
for(int i=;i<limit;i++) A[i]*=ny,A[i]=(A[i]%mod+mod)%mod;
}
}
int d[maxn];
void inv(int step,ll *A,ll *B) {
if(step==) {B[]=power(A[],mod-);return;}
inv((step+)>>,A,B);
l=,limit=;
while(limit<=(step<<)) limit<<=,l++;
for(int i=;i<limit;i++) pos[i]=(pos[i>>]>>)|((i&)<<(l-));
for(int i=;i<step;i++) c[i]=A[i];
for(int i=step;i<limit;i++) c[i]=;
NTT(c,);NTT(B,);
for(int i=;i<limit;i++) B[i]=((2ll-c[i]*B[i]%mod)+mod)%mod*B[i]%mod;
NTT(B,-);
for(int i=step;i<limit;i++) B[i]=;
}
int main() {
n=read();
for(int i=;i<n;i++) a[i]=read();
inv(n,a,b);
for(int i=;i<n;i++) printf("%lld ",b[i]);
}
多项式求逆
多项式开根
void getsqr(ll *A,ll *B,ll len) {
if(len==) {B[]=;return;}
getsqr(A,B,(len+)>>);
memset(invb,,sizeof(invb));
getinv(B,invb,len);
l=,limit=;
while(limit<=(len<<)) limit<<=,l++;
for(int i=;i<limit;i++) pos[i]=(pos[i>>]>>)|((i&)<<(l-));
for(int i=;i<len;i++) c[i]=A[i];
for(int i=len;i<limit;i++) c[i]=;
NTT(invb,);NTT(c,);NTT(B,);
for(int i=;i<limit;i++) {B[i]=((c[i]*invb[i]%mod)*inv2%mod+B[i]*inv2)%mod;}
NTT(B,-);
for(int i=len;i<limit;i++) B[i]=;
}
FFT模板 生成函数 原根 多项式求逆 多项式开根的更多相关文章
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...
- 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- 【learning】多项式相关(求逆、开根、除法、取模)
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...
- [Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]
题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 ...
- P6295-有标号 DAG 计数【多项式求逆,多项式ln】
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题 ...
- bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题
题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \( ...
随机推荐
- Codeforces Round #326 (Div. 2) B Duff in Love 简单数论 姿势涨
B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- bzoj 1218 [HNOI2003]激光炸弹 二维前缀和
[HNOI2003]激光炸弹 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3022 Solved: 1382[Submit][Status][Di ...
- HDU1078记忆化搜索
FatMouse and Cheese Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- hive获取日期对应的星期
pmod(datediff(order_date,'2000-01-02'),7)
- JavaScript的性能优化:加载和执行
随着 Web2.0 技术的不断推广,越来越多的应用使用 javascript 技术在客户端进行处理,从而使 JavaScript 在浏览器中的性能成为开发者所面临的最重要的可用性问题.而这个问题又因 ...
- [USACO11FEB] Cow Line
https://www.luogu.org/problem/show?pid=3014 题目描述 The N (1 <= N <= 20) cows conveniently number ...
- MyBatis框架的使用及源码分析(五) DefaultSqlSessionFactory和DefaultSqlSession
我们回顾<MyBatis框架中Mapper映射配置的使用及原理解析(一) 配置与使用> 一文的示例 private static SqlSessionFactory getSessionF ...
- Strand Sort
Strand sort是思路是这样的,它首先需要一个空的数组用来存放最终的输出结果,给它取个名字叫"有序数组" 然后每次遍历待排数组,得到一个"子有序数组",然 ...
- PHP扩展--Yaf框架安装
安装/配置 编译安装 wge thttp://pecl.php.net/get/yaf-2.3.5.tgz tar -zxvfyaf-2.3.5.tgz cd yaf-2.3.5/ cd extens ...
- python学习笔记(六)之操作符
python中算术操作符: + - * / % ** // 注意: /:为真实除法,即对应数学中的除法,通常返回一个浮点数 //:取整除法,即取商 %:求模,即取余数 **:幂运算,这里需要注意的一点 ...