Redis几个认识误区(转)
add by zhj: 文章很老了,2010年的,注意,下面几点是作者认为的误区
原文:http://timyang.net/data/redis-misunderstanding/
前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Service(1)概括的那几个范围,James第一条经验“Design for failure”是所有互联网架构成功的一个关键。互联网系统的工程理论其实非常简单,James paper中内容几乎称不上理论,而是多条实践经验分享,每个公司对这些经验的理解及执行力决定了架构成败。
题外话说完,最近又研究了Redis。去年曾做过一个MemcacheDB, Tokyo Tyrant, Redis performance test,到目前为止,这个benchmark结果依然有效。这1年我们经历了很多眼花缭乱的key value存储产品的诱惑,从Cassandra的淡出(Twitter暂停在主业务使用)到HBase的兴起(Facebook新的邮箱业务选用HBase(2)),当再回头再去看Redis,发现这个只有1万多行源代码的程序充满了神奇及大量未经挖掘的特性。Redis性能惊人,国内前十大网站的子产品估计用1台Redis就可以满足存储及Cache的需求。除了性能印象之外,业界其实普遍对Redis的认识存在一定误区。本文提出一些观点供大家探讨。
1. Redis是什么
这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。
互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。
2. Redis不可能比Memcache快?
很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。
- Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。
- CAS问题。CAS是Memcached中比较方便的一种防止竞争修改资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。
3. 单台Redis的存放数据必须比物理内存小?
Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。
这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。
基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的限制。并实现了数据冷热分离。
4. Redis的VM实现是重复造轮子?
Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。
作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。
5. 用get/set方式使用Redis?
作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是最优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。
假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。
这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。
6. 使用aof代替snapshot?
Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。
其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。
小结
要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。希望更多同行加入到Redis使用及代码研究行列。
参考文献
- On Designing and Deploying Internet-Scale Service(PDF)
- Facebook’s New Real-Time Messaging System: HBase To Store 135+ Billion Messages A Month
- What’s wrong with 1975 programming
- Linux epoll is now supported(Google Groups)
- CAS and why I don’t want to add it to Redis(Google Groups)
- Plans for Virtual Memory(Google Groups)
- Full of keys(Salvatore antirez Sanfilippo)
Redis几个认识误区(转)的更多相关文章
- (5)Redis几个认识误区
前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Serv ...
- Redis几个认识误区(转)
此文的作者是新浪微博平台架构师杨卫华(timyang)大师,如果关注了新浪一些牛人微博的同学应该知道,timyang前段时间正在对Redis进行一些研究和测试,也分享出了不少成果.下面一篇文章相信是t ...
- Redis几个认识误区
前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Serv ...
- [转]Redis几个认识误区
转自timyang:http://timyang.net/data/redis-misunderstanding/ 前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出Jam ...
- Redis的bind的误区(转)
原文1:https://blog.csdn.net/cw_hello1/article/details/83444013 原文2:https://www.cnblogs.com/suiyueqiann ...
- Redis资料汇总专题
1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis系统性介绍 一个很棒的Redis介绍PPT 强烈推荐!非同一般的Redis介绍 Redis之七种武器 锋利的Redis redis ...
- redis资料汇总
redis资源比较零散,引用nosqlfan上的文章,方便大家需要时翻阅.大家看完所有的,如果整理出文章的,麻烦知会一下,方便学习. 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redi ...
- redis介绍【转】
Redis新的存储模式diskstore Thursday, Jan 6th, 2011 by Tim | 13 CommentsFiled under: data | Tags: Mongo, Mo ...
- [转载] Redis资料汇总专题
转载自http://www.cnblogs.com/tommyli/archive/2011/12/14/2287614.html 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis ...
随机推荐
- [svc]caffe安装笔记-显卡购买
caffe,这是是数据组需要做一些大数据模型的训练(深度学习), 要求 服务器+显卡(运算卡), 刚开始老板让买的牌子是泰坦的(这是2年前的事情了). 后来买不到这个牌子的,(jd,tb)看过丽台的, ...
- MVVM 实战之计算器
MVVM 实战之计算器 android DataBinding MVVM calculator Model View 布局文件 Fragment ViewModel 结束语 前些日子,一直在学习基于 ...
- SOCK_RAW编程
TCP(SOCK_STREAM)和UDP套接口(SOCK_DGRAM)可以满足大部分需求,但要获取底层协议内容就需要原始套接字.相比前两者,SOCK_RAW具有如下优点: 1)使用原始套接字可以读写I ...
- mysql information_schema 数据库简介:
.CHARACTER_SETS 表 CREATE TEMPORARY TABLE `CHARACTER_SETS` ( `CHARACTER_SET_NAME` varchar() NOT NULL ...
- flutter 环境
以下内容copy 于 https://www.cnblogs.com/lovelyYakir/p/7610396.html 原文请参考此 我只是做个记录 第一步:安装Git 你需要安装Git作为Flu ...
- Storm实战
需求: spout输出一些手机品牌小写名称,第一个bolt将手机名称转成大写,第二个bolt在手机名称的后面再追加上时间. 项目目录: 导入相关的jar包. RandomWordSpout.java: ...
- Linux下搭建Zookeeper环境
Zookeeper 是 Google 的 Chubby一个开源的实现,是 Hadoop 的分布式协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等. 其工作原 ...
- 8237dma的四种传送方式简介
8237A有四种工作方式:单字节传送.数据块传送.请求传送和多片级联. (1)单字节传送(single mode) 单字节传送方式是每次DMA传送时,仅传送一个字节.传送一个字节之后,当前字节计数器减 ...
- ADO.NET数据库编程
ADO.NET数据库编程 1.ADO.NET的相关概念. Microsoft的新一代技术,是ADO组件的后继者. 主要目的是在.NET Framework平台存取数据. 提供一致的对象模型,可以存取和 ...
- SQL宝典
SQL Server 数据库的高级操作 (1) 批处理 (2) 变量 (3) 逻辑控制 (4) 函数 (5) 高级查询 */ (1)批处理 将多条SQL语句作为一个整体去编译,生成一个执行计划,然后, ...