Description

CIA headquarter collects data from across the country through its classified network. They have been using optical fibres long before it's been deployed on any civilian projects. However they are still under a lot pressure recently because the data are growing rapidly. As a result they are considering upgrading the network with new technologies that provide a few times wider bandwidth. In the experiemental stage, they would like to upgrade one segment of their original network in order to see how it performs. And as a CIA intern it's your responsibility to investigate which segment could actually help increase the total bandwidth the headquarter receives, suppose that all the cities have infinite data to send and the routing algorithm is optimized. As they have prepared the data for you in a few minutes, you are told that they need the result immediately. Well, practically immediately.

Input

Input contains multiple test cases. First line of each test case contains three integers n, m and l, they represent the number of cities, the number of relay stations and the number of segments. Cities will be referred to as integers from 1 to n, while relay stations use integers from n+1 to n+m. You can saves assume that n + m <= 100, l <= 1000 (all of them are positive). The headquarter is identified by the integer 0.

The next l lines hold a segment on each line in the form of a b c, where a is the source node and b is the target node, while c is its bandwidth. They are all integers where a and b are valid identifiers (from 0 to n+m). c is positive. For some reason the data links are all directional.

The input is terminated by a test case with n = 0. You can safely assume that your calculation can be housed within 32-bit integers.

Output

For each test print the segment id's that meets the criteria. The result is printed in a single line and sorted in ascending order, with a single space as the separator. If none of the segment meets the criteria, just print an empty line. The segment id is 1 based not 0 based.

题目大意:有n个发射点,m个中间点,和一个接受点0,中间由L条有向光纤连接,每个光纤有一定的带宽,问扩大哪些光纤(只能扩大一条)的带宽可以扩大发射点的总带宽。

思路:从源点S到n个发射点连一条容量为无穷大的边,再连接L条光纤,容量为该光纤的带宽,以0为汇点T。题目转化成扩大哪些边的容量可以增加最大流。先在图上求最大流,在残量网络中,把S能到的点标记为1,把能到T的点标记为2,那么当一条边的出发点为1、结束点为2,这条边就是关键割边,也就是所求的边之一。如果有一条边的其中一个点未被标记,那么扩大这条边的容量,也就不过是从源点到达的点多了一个,或者到达汇点的点多了一个,但是在这个残量网络中依旧没有从S到T的增广路。如果两个点都未被标记……那更加不可以啦……

PS:出发点为2结束点为1的边,增加容量也不会有增广路出现,曾因为这个WA了一次>_<

BFS+ISAP(30MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = ;
const int INF = 0x3fff3fff; struct SAP {
int head[MAXN], dis[MAXN], pre[MAXN], cur[MAXN], gap[MAXN];
int to[MAXE], next[MAXE], flow[MAXE];
int n, st, ed, ecnt; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; flow[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d->%d flow = %d\n", u, v, c);
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss; ed = tt; n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && dis[u] == dis[v] + ) {
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && minDis > dis[v]) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
gap[dis[u] = minDis + ]++;
u = pre[u];
}
return ans;
} int mark[MAXN]; void make_cut() {
memset(mark, , sizeof(mark));
queue<int> que;
que.push(st); mark[st] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && !mark[v]) {
mark[v] = ;
que.push(v);
}
}
}
que.push(ed); mark[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p ^ ] && !mark[v]) {
mark[v] = ;
que.push(v);
}
}
}
}
} G; int from[MAXE], to[MAXE];
int n, m, L, c; int main() {
while(scanf("%d%d%d", &n, &m, &L) != EOF) {
if(n == ) break;
int ss = n + m + , tt = ;
G.init();
for(int i = ; i <= n; ++i) G.add_edge(ss, i, INF);
for(int i = ; i <= L; ++i) {
scanf("%d%d%d", &from[i], &to[i], &c);
G.add_edge(from[i], to[i], c);
}
//printf("%d\n", G.Max_flow(ss, tt, ss));
G.Max_flow(ss, tt, ss);
G.make_cut();
bool flag = false;
for(int i = ; i <= L; ++i) {
int &u = from[i], &v = to[i];
if(G.mark[u] == && G.mark[v] == ) {
if(flag) printf(" ");
printf("%d", i);
flag = true;
}
}
puts("");
}
}

ZOJ 2532 Internship(最大流找关键割边)的更多相关文章

  1. ZOJ 2532 Internship 求隔边

    Internship Time Limit: 5 Seconds      Memory Limit: 32768 KB CIA headquarter collects data from acro ...

  2. zoj 2532 Internship【最小割】

    就是求哪些边在最大流上满流,也就是找割边.把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连.跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向 ...

  3. ZOJ 2532 Internship

    Internship Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original ID: ...

  4. B - Internship (网络流关键割边)

    题目链接:https://cn.vjudge.net/contest/281961#problem/B 题目大意:给你n个城市,中间有一些中转站,然后给你终点,再给你l条轨道以及流量,问你增加哪几条轨 ...

  5. poj 3204(最小割--关键割边)

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  6. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  7. hdu3313 最大流找关键点,或者最短路找关键点.

    题意:      给你一个有向图,然后给你起点和终点,问你从起点到终点有多少个关键点,如果当前的这个点删除了就无法从起点到终点,那么这个点就是一个关键点.. 思路:      (1)有两种做法,我用的 ...

  8. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  9. HDU-3416 Marriage Match IV 最短路+最大流 找各最短路的所有边

    题目链接:https://cn.vjudge.net/problem/HDU-3416 题意 给一个图,求AB间最短路的条数(每一条最短路没有重边.可有重复节点) 思路 首先把全部最短路的边找出来,再 ...

随机推荐

  1. http请求常用的状态码

    常见的http请求响应的状态码 一些常见的状态码为: 200 – 服务器成功返回网页 404 – 请求的网页不存在 503 – 服务不可用 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状 ...

  2. (Nagios)-check_hpasm[HP]

    Nagios Check_hp HP 2014年11月18日 下午 08:49  https://IP:2381     [root@nagios ~]# tar zxvf check_hp_blad ...

  3. Linux基础命令之文件和目录操作(一)

    pwd print working directory的缩写,作用是显示当前工作目录的绝对路径,一般进行频繁切换路径时使用. -L 显示逻辑路径(或略软链接文件),不常用. -P 显示物理路径,不常用 ...

  4. Linux awk命令用法

    概述 awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各种分析处理 awk工作流程是这样的:读入有'\n'换行符分割的一条记录,然后将记录按指定的域分隔符划分域,填充域,$0 ...

  5. openstack之kvm常用操作

    KVM虚拟机的管理主要是通过virsh命令对虚拟机进行管理. 1.   查看KVM虚拟机配置文件及运行状态 KVM虚拟机默认配置文件位置: /etc/libvirt/qemu/ autostart目录 ...

  6. 《PHP发送邮件PHPMailer》系列分享专栏

    <PHP发送邮件PHPMailer>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/201726.html 文章 PHPMailer ...

  7. shazam音乐检索算法 附完整c代码

    在讲算法之前,上一些前人的资料. http://coding-geek.com/how-shazam-works/ https://laplacian.wordpress.com/2009/01/10 ...

  8. c语言中 *p++ 和 (*p)++ 有什么区别?以及C语言运算符的优先级。整理。

    *p++是指下一个地址. (*p)++是指将*p所指的数据的值加一. C编译器认为*和++是同优先级操作符,且都是从右至左结合的,所以*p++中的++只作用在p上,和*(p++)意思一样:在(*p)+ ...

  9. Noip 2011 Day 1 & Day 2

    Day 1   >>> T1   >> 水题一道 . 我们只需要 for 一遍 , 由于地毯是从下往上铺的 , 我们只需要记录该位置最上面的地毯的编号 , 每一次在当前地 ...

  10. Shr-前端汇总

    F7控件监听 f7控件的监听是指,在点击F7控件时,对控件内的内容进行选中后出发该事件监听:通过参数value可以获取当前F7控件的一些值信息. //人力编制方案监听 回写计划期间 及分录数据 ini ...