BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】
题目链接
题解
根据题中的式子,手玩一下发现和\(gcd\)很像
化一下式子:
bf(a,a + b) &= (a + b)f(a,b) \\
\frac{f(a,a + b)}{a + b} &= \frac{f(a,b)}{b} \\
\frac{f(a,a + b)}{a(a + b)} &= \frac{f(a,b)}{ab} \\
\frac{f(a,b)}{ab} &= \frac{f(d,d)}{d^2} \\
\end{aligned}
\]
其中\(d = gcd(a,b)\)
那么我们有
ans &= \sum\limits_{i = 1}^{k} \sum\limits_{j = 1}^{k} f(i,j) \\
&= \sum\limits_{d = 1}^{k} f(d,d) \sum\limits_{d|i} \sum\limits_{d|j} \frac{ij}{d^2} \quad [gcd(i,j) == d] \\
&= \sum\limits_{d = 1}^{k} f(d,d) \sum\limits_{i = 1}^{\lfloor \frac{k}{d} \rfloor} \sum\limits_{j = 1}^{\lfloor \frac{k}{d} \rfloor} ij \quad [i \perp j] \\
\end{aligned}
\]
令
\]
由于
\]
所以
g(n) &= \sum\limits_{i = 1}^{n} i \times 2 \times \frac{i\varphi(i)}{2} \\
&= \sum\limits_{i = 1}^{n} i^2\varphi(i) \\
\end{aligned}
\]
我们可以线性筛\(O(n)\)预处理出\(g(n)\)
对于答案的式子,可以\(O(\sqrt{k})\)整除分块
所以我们只需要\(O(1)\)计算\(f(d,d)\)的前缀和
分块即可
块外维护块的前缀和,块内维护块内前缀和
这样修改是\(O(\sqrt{n})\)的,修改复杂度\(O(m\sqrt{n})\)
且询问时\(O(1)\)的
总复杂度\(O(m\sqrt{n})\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 4000005,maxm = 400005,INF = 1000000000,P = 1000000007;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int m,n,sum[maxn],S[maxn],b[maxn],L[maxn],R[maxn],bi,B;
inline void modify(int u,int x){
int v = x % P;
if (u == L[b[u]]) v = ((v - S[u]) % P + P) % P;
else v = ((v - (S[u] - S[u - 1]) % P) % P + P) % P;
v = (v + P) % P;
for (int i = u; i <= R[b[u]]; i++)
S[i] = (S[i] + v) % P;
for (int i = b[u]; i <= bi; i++)
sum[i] = (sum[i] + v) % P;
}
inline int query(int u){
if (!u) return 0;
return (S[u] + sum[b[u] - 1]) % P;
}
int p[maxn],pi,isn[maxn],phi[maxn],g[maxn],val[maxn];
void init(){
phi[1] = 1;
for (register int i = 2; i <= n; i++){
if (!isn[i]) p[++pi] = i,phi[i] = i - 1;
for (int j = 1; j <= pi && i * p[j] <= n; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
for (register int i = 1; i <= n; i++)
g[i] = (g[i - 1] + 1ll * val[i] * phi[i] % P) % P;
}
LL gcd(LL a,LL b){return b ? gcd(b,a % b) : a;}
int main(){
m = read(); n = read(); B = (int)sqrt(n) + 1;
for (register int i = 1; i <= n; i++){
b[i] = i / B + 1; val[i] = 1ll * i * i % P;
if (b[i] != b[i - 1]) R[b[i - 1]] = i - 1,L[b[i]] = i;
sum[b[i]] = (sum[b[i]] + val[i]) % P;
if (i != L[b[i]]) S[i] = S[i - 1];
S[i] = (S[i] + val[i]) % P;
}
R[b[n]] = n; bi = b[n];
for (register int i = 1; i <= bi; i++)
sum[i] = (sum[i] + sum[i - 1]) % P;
init();
LL a,b,x,k,d,ans;
while (m--){
a = read(); b = read(); x = read(); k = read();
d = gcd(a,b); x /= (a / d) * (b / d); x %= P;
modify(d,x);
ans = 0;
for (int i = 1,nxt; i <= k; i = nxt + 1){
nxt = k / (k / i);
ans = (ans + 1ll * (query(nxt) - query(i - 1)) % P * g[k / i] % P) % P;
}
printf("%lld\n",(ans % P + P) % P);
}
return 0;
}
BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】的更多相关文章
- [BZOJ4815][CQOI2017]小Q的表格 数论+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...
- [CQOI2017]小Q的表格(数论+分块)
题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...
- [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)
4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 832 Solved: 342[Submit][Statu ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- [bzoj4815]: [Cqoi2017]小Q的表格
来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. ...
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)
[BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
- [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格
Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...
随机推荐
- 互联网行业求职课-教你进入BAT
互联网行业求职课--教你进入BAT 课时1. 课程内容介绍.导师介绍.服务安排和介绍等 课时2. 互联网行业.职业选择指导 互联网公司选择: 大公司:收获:大平台,系统思维,系统培训,系统性的发展,薪 ...
- [CF106C]Buns
面包师Lavrenty打算用馅料做几个面包,然后把它们卖掉. Lavrenty有\(n\)克面团和\(m\)种不同的馅料.馅料种类的下标从\(1到m\),他知道他的第\(i\)种馅料剩下\(a_i\) ...
- (Python爬虫04)了解通用爬虫和聚焦爬虫,还是理论知识.快速入门可以略过的
如果现在的你返回N年前去重新学习一门技能,你会咋做? 我会这么干: ...哦,原来这个本事学完可以成为恋爱大神啊, 我要掌握精髓需要这么几个要点一二三四..... 具体的学习步骤是这样的一二三.... ...
- 爬虫1.5-ajax数据爬取
目录 爬虫-ajax数据爬取 1. ajax数据 2. selenium+chromedriver知识准备 3. selenium+chromedriver实战拉勾网爬虫代码 爬虫-ajax数据爬取 ...
- CSP201509-2:日期计算
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- HADOOP-输出数据实体类承载
新建一个bean包: 1.实现Writerable 2.有一个空的构造方法 代码实现: import java.io.DataInput; import java.io.DataOutput; imp ...
- 简单的图片滑动效果插件 jQuery.iocnSlider.js
近几日在制作一个客户引导页面,其中有一个图片展示而且带滑动的效果.好久没练手了,索性自己写一个插件吧. 依据设计原型,需要满足两套分辨率下图片不同的尺寸,所以在css中使用了media query的相 ...
- 初涉 JavaScript
网页是什么 网页 = Html+CSS+JavaScriptHtml:网页元素内容CSS:控制网页样式JavaScript:操作网页内容,实现功能或者效果 JavaScirpt 发展历史 参考 使用 ...
- 地牢逃脱(BFS(广度优先搜索))
题目描述 给定一个 n 行 m 列的地牢,其中 '.' 表示可以通行的位置,'X' 表示不可通行的障碍,牛牛从 (x0 , y0 ) 位置出发,遍历这个地牢,和一般的游戏所不同的是,他每一步只能按照一 ...
- HTMLTestRunner解决UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xe5 in position 108: ordinal not in range(128)
其中HTML和数据库都是设置成utf-8格式编码,插入到数据库中是正确的,但是当读取出来的时候就会出错,原因就是python的str默认是ascii编码,和unicode编码冲突,就会报这个标题错误. ...