【线性DP】【lgP1336】最佳课题选择
Description
Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择。由于课题数有限,Matrix67不得不重复选择一些课题。完成不同课题的论文所花的时间不同。具体地说,对于某个课题i,若Matrix67计划一共写x篇论文,则完成该课题的论文总共需要花费Ai*x^Bi个单位时间(系数Ai和指数Bi均为正整数)。给定与每一个课题相对应的Ai和Bi的值,请帮助Matrix67计算出如何选择论文的课题使得他可以花费最少的时间完成这n篇论文。
Input
第一行有两个用空格隔开的正整数n和m,分别代表需要完成的论文数和可供选择的课题数。
以下m行每行有两个用空格隔开的正整数。其中,第i行的两个数分别代表与第i个课题相对应的时间系数Ai和指数Bi。
Output
输出完成n篇论文所需要耗费的最少时间。
Sample Input
Sample Output
Hint
对于30%的数据,n<=,m<=; 对于100%的数据,n<=,m<=,Ai<=,Bi<=。
Solution
第一次定义的方程为f[i]表示写前i篇论文的最小花费,发现无法转移。因为a*(x+y)^b显然不等于a*x^b+a*y^b。考虑阶段划分:对于同一种课题的花费,在一个状态中要一次性计算下来,否则就会出现无法转移的情况。由此可将课题种类数作为阶段,设f[i][j]表示用前i个课题写j篇论文的花费。转移显然:f[i][j]=min{f[i-1][k]+a[i]*pow((j-k),b[i])|其中k<j}。显然可以把第一维滚动掉,但是我懒得滚了= =。
对于边界,f[i][0]=0,其中i∈[0,m]
Code
#include<cstdio>
#include<cstring>
#define maxn 205
#define maxm 25
#define ll long long int inline void qr(ll &x) {
char ch=getchar();ll f=;
while(ch>''||ch<'') {
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x*=f;
return;
} inline ll max(ll a,ll b) {return a>b?a:b;}
inline ll min(ll a,ll b) {return a<b?a:b;} inline void swap(ll &a,ll &b) {
ll c=a;a=b;b=c;return;
} ll n,m,frog[maxn][maxn]; struct Pa {
ll a,b;
};
Pa pa[maxn]; ll pow(ll a,ll b) {
if(!b) return ;
if(!(b^)) return a;
ll t=b/;
ll an=pow(a,t);
if(b%) return an*an*a;
else return an*an;
} int main() {
qr(n);qr(m);
for(int i=;i<=m;++i) {
qr(pa[i].a);qr(pa[i].b);
}
std::memset(frog,0x3f,sizeof frog);frog[][]=;
for(int i=;i<=m;++i) frog[i][]=;
for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
for(int k=;k<=j;++k) {
frog[i][j]=min(frog[i][j],frog[i-][j-k]+pa[i].a*pow(k,pa[i].b));
}
}
}
printf("%lld\n",frog[m][n]);
return ;
}
Summary
1、不要闲的没事一上来就压维。发现状态不对容易懵逼
2、在设计状态的时候,一般而言需要在一个状态中需要一次性计算的会被作为阶段进行划分,划分时注意感性领悟一下无后效性原则,不要闷头方程。
3、在不压维状态下若以一个维度为阶段无法转移可以尝试使用另一个维度作为阶段
4、对于看起来需要记录以往信息但又明显不是状压的DP(例如本题若使用论文数作为阶段需要记录对于每一个状态每一个课题选了多少),一般而言会把需要记录的信息作为阶段,目的还是,方便一次性计算。
5、初始化的时候把所有能想到的边界全部初始化掉。别嫌麻烦。不然容易GG。
End on 2018/6/3
【线性DP】【lgP1336】最佳课题选择的更多相关文章
- 洛谷 P1336 最佳课题选择
P1336 最佳课题选择 题目提供者 yeszy 标签 动态规划 福建省历届夏令营 传送门 难度 尚无评定 题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课 ...
- P1336 最佳课题选择
P1336 最佳课题选择 题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同 ...
- luogu P1336 最佳课题选择 |背包dp
题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...
- [codevs1554]最佳课题选择
题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...
- luogu P1336 最佳课题选择
题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...
- RQNOJ 117 最佳课题选择:多重背包
题目链接:https://www.rqnoj.cn/problem/117 题意: NaCN_JDavidQ要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择. 由于课题数有限,NaCN_JD ...
- 洛谷 题解 P1336 【最佳课题选择】
详细解析解题过程 设计状态 dp[i][j]表示前i节课题写j篇论文花费的最少时间 初始数组 for(int i=0;i<=20;i++) for(int j=0;j<=200;j++)d ...
- luogu1336 最佳课题选择
背包问题加强版orz #include<iostream> #include<cstdio> #include<cmath> #include<cstring ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
随机推荐
- Jmeter登录接口返回 status415
1.现象:在查看结果树中看到: Request Headers:Connection: keep-aliveContent-Type: application/x-www-form-urlencode ...
- 【xmlHttp_Class 远程访问类】使用说明
类名:xmlHttp_Class 说明:远程获取外部网站数据信息或执行一个外部网站程序 目录: 类型 名称 参数 返回 说明 属性 [必需] [xmlHttp].url = [urlString] - ...
- fastCMS八大核心对象
fastCMS内置system对象,该对象包含八大核心对象,应用于不同的操作场景,分别是: 1.system.string 对象(处理字符类操作) 2.system.number 对象(处理数字类操作 ...
- lintcode 二叉树中序遍历
/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...
- 孤荷凌寒自学python第七十九天开始写Python的第一个爬虫9并使用pydocx模块将结果写入word文档
孤荷凌寒自学python第七十九天开始写Python的第一个爬虫9 (完整学习过程屏幕记录视频地址在文末) 今天在上一天的基础上继续完成对我的第一个代码程序的书写. 到今天终于完成了对docx模块针对 ...
- Android开发-API指南-<permission>
<permission> 英文原文:http://developer.android.com/guide/topics/manifest/permission-element.html 采 ...
- Python基础 之 tuple类-元组 和 dict类-字典
tuple 元组 一.tuple 类的基本属性 1.元组,有序:元素不可被修改,不能被增加或者删除tuple类 tu = (111,22,33,44) 一般写元组的时候,推荐在最后加入,和类方法进行区 ...
- OpenMPI源码剖析1:MPI_Init初探
OpenMPI的底层实现: 我们知道,OpenMPI应用起来还是比较简单的,但是如果让我自己来实现一个MPI的并行计算,你会怎么设计呢?————这就涉及到比较底层的东西了. 回想起我们最简单的代码,通 ...
- ubuntu server guide 学习笔记
1. 软件包 1.1. dpkg dpkg -l dpkg -l | grep apache2 dpkg -L ufw dpkg -S /etc/host.conf dpkg -i zip_3.0-4 ...
- [转载] RCNN/SPP/FAST RCNN/FASTER RCNN/YOLO/SSD算法简介
RCNN: RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过Regio ...