传送门

Description

  Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择。由于课题数有限,Matrix67不得不重复选择一些课题。完成不同课题的论文所花的时间不同。具体地说,对于某个课题i,若Matrix67计划一共写x篇论文,则完成该课题的论文总共需要花费Ai*x^Bi个单位时间(系数Ai和指数Bi均为正整数)。给定与每一个课题相对应的Ai和Bi的值,请帮助Matrix67计算出如何选择论文的课题使得他可以花费最少的时间完成这n篇论文。

Input

  第一行有两个用空格隔开的正整数n和m,分别代表需要完成的论文数和可供选择的课题数。

  以下m行每行有两个用空格隔开的正整数。其中,第i行的两个数分别代表与第i个课题相对应的时间系数Ai和指数Bi。

Output

  输出完成n篇论文所需要耗费的最少时间。

Sample Input


Sample Output


Hint

对于30%的数据,n<=,m<=;

对于100%的数据,n<=,m<=,Ai<=,Bi<=。

Solution

  第一次定义的方程为f[i]表示写前i篇论文的最小花费,发现无法转移。因为a*(x+y)^b显然不等于a*x^b+a*y^b。考虑阶段划分:对于同一种课题的花费,在一个状态中要一次性计算下来,否则就会出现无法转移的情况。由此可将课题种类数作为阶段,设f[i][j]表示用前i个课题写j篇论文的花费。转移显然:f[i][j]=min{f[i-1][k]+a[i]*pow((j-k),b[i])|其中k<j}。显然可以把第一维滚动掉,但是我懒得滚了= =。

  对于边界,f[i][0]=0,其中i∈[0,m]

Code

#include<cstdio>
#include<cstring>
#define maxn 205
#define maxm 25
#define ll long long int inline void qr(ll &x) {
char ch=getchar();ll f=;
while(ch>''||ch<'') {
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x*=f;
return;
} inline ll max(ll a,ll b) {return a>b?a:b;}
inline ll min(ll a,ll b) {return a<b?a:b;} inline void swap(ll &a,ll &b) {
ll c=a;a=b;b=c;return;
} ll n,m,frog[maxn][maxn]; struct Pa {
ll a,b;
};
Pa pa[maxn]; ll pow(ll a,ll b) {
if(!b) return ;
if(!(b^)) return a;
ll t=b/;
ll an=pow(a,t);
if(b%) return an*an*a;
else return an*an;
} int main() {
qr(n);qr(m);
for(int i=;i<=m;++i) {
qr(pa[i].a);qr(pa[i].b);
}
std::memset(frog,0x3f,sizeof frog);frog[][]=;
for(int i=;i<=m;++i) frog[i][]=;
for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
for(int k=;k<=j;++k) {
frog[i][j]=min(frog[i][j],frog[i-][j-k]+pa[i].a*pow(k,pa[i].b));
}
}
}
printf("%lld\n",frog[m][n]);
return ;
}

Summary

1、不要闲的没事一上来就压维。发现状态不对容易懵逼

2、在设计状态的时候,一般而言需要在一个状态中需要一次性计算的会被作为阶段进行划分,划分时注意感性领悟一下无后效性原则,不要闷头方程。

3、在不压维状态下若以一个维度为阶段无法转移可以尝试使用另一个维度作为阶段

4、对于看起来需要记录以往信息但又明显不是状压的DP(例如本题若使用论文数作为阶段需要记录对于每一个状态每一个课题选了多少),一般而言会把需要记录的信息作为阶段,目的还是,方便一次性计算。

5、初始化的时候把所有能想到的边界全部初始化掉。别嫌麻烦。不然容易GG。

End on 2018/6/3

【线性DP】【lgP1336】最佳课题选择的更多相关文章

  1. 洛谷 P1336 最佳课题选择

    P1336 最佳课题选择 题目提供者 yeszy 标签 动态规划 福建省历届夏令营 传送门 难度 尚无评定 题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课 ...

  2. P1336 最佳课题选择

    P1336 最佳课题选择 题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同 ...

  3. luogu P1336 最佳课题选择 |背包dp

    题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...

  4. [codevs1554]最佳课题选择

    题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...

  5. luogu P1336 最佳课题选择

    题目描述 Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择.由于课题数有限,Matrix67不得不重复选择一些课题.完成不同课题的论文所花的时间不同.具体地说,对于某个课题i ...

  6. RQNOJ 117 最佳课题选择:多重背包

    题目链接:https://www.rqnoj.cn/problem/117 题意: NaCN_JDavidQ要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择. 由于课题数有限,NaCN_JD ...

  7. 洛谷 题解 P1336 【最佳课题选择】

    详细解析解题过程 设计状态 dp[i][j]表示前i节课题写j篇论文花费的最少时间 初始数组 for(int i=0;i<=20;i++) for(int j=0;j<=200;j++)d ...

  8. luogu1336 最佳课题选择

    背包问题加强版orz #include<iostream> #include<cstdio> #include<cmath> #include<cstring ...

  9. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

随机推荐

  1. selenium自动化测试资源整理

    1. 所有版本chrome下载 是不是很难找到老版本的chrome?博主收集了几个下载chrome老版本的网站,其中哪个下载的是原版的就不得而知了. http://www.slimjet.com/ch ...

  2. selenium(Java)WebDriverWait等待机制

    //标题是不是“百度一下,你就知道” 18 new WebDriverWait(driver,5).until(ExpectedConditions.titleIs("百度一下,你就知道&q ...

  3. python爬虫基础之一(爬淘宝)

    没想到python如此强大, 今天看一会视频学会了一段python爬虫 这就是我今天学到的内容爬去淘宝网关于书包的一些信息,包括价格, #coding=utf-8 import requests#导入 ...

  4. 【swiper】 滑块组件说明

    swiper 滑块视图容器,其原型如下: <swiper indicator-dots="[Boolean]" indicator-color="[Color]&q ...

  5. leetcode-组合总数IV(动态规划)

    377. 组合总和 Ⅳ 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数. 示例: nums = [1, 2, 3] target = 4   所有可能的组合为: (1, ...

  6. LCD1602指令集解读

    LCD1602指令集(11个)     1.清屏指令(clear display)   RS=0 ,R/w=0, 01H 功能:清除液晶显示器,即将DDRAM中的内容全部填入20H(空白字符)     ...

  7. 浅谈PCA

    最近在回顾PCA方面的知识,发现对于之前的很多东西有了新的理解,下面和大家分享下我的一些个人的理解 1.我们为什么要用PCA,它能解决我什么问题? PCA(Principal Component An ...

  8. @Configuration和@Bean

    @Configuration可理解为用spring的时候xml里面的标签 @Bean可理解为用spring的时候xml里面的标签 Spring Boot不是spring的加强版,所以@Configur ...

  9. Executor Framework

    Why? look at the following 2 pieces of code for implementing a simple web server based on socket, ca ...

  10. Python3 小工具-UDP发现

    from scapy.all import * import optparse import threading import os def scan(ip): pkt=IP(dst=ip)/UDP( ...