codeforces 981 C.Useful Decomposition
1 second
256 megabytes
standard input
standard output
Ramesses knows a lot about problems involving trees (undirected connected graphs without cycles)!
He created a new useful tree decomposition, but he does not know how to construct it, so he asked you for help!
The decomposition is the splitting the edges of the tree in some simple paths in such a way that each two paths have at least one common vertex. Each edge of the tree should be in exactly one path.
Help Remesses, find such a decomposition of the tree or derermine that there is no such decomposition.
The first line contains a single integer $$$n$$$ ($$$2 \leq n \leq 10^{5}$$$) the number of nodes in the tree.
Each of the next $$$n - 1$$$ lines contains two integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \leq a_i, b_i \leq n$$$, $$$a_i \neq b_i$$$) — the edges of the tree. It is guaranteed that the given edges form a tree.
If there are no decompositions, print the only line containing "No".
Otherwise in the first line print "Yes", and in the second line print the number of paths in the decomposition $$$m$$$.
Each of the next $$$m$$$ lines should contain two integers $$$u_i$$$, $$$v_i$$$ ($$$1 \leq u_i, v_i \leq n$$$, $$$u_i \neq v_i$$$) denoting that one of the paths in the decomposition is the simple path between nodes $$$u_i$$$ and $$$v_i$$$.
Each pair of paths in the decomposition should have at least one common vertex, and each edge of the tree should be presented in exactly one path. You can print the paths and the ends of each path in arbitrary order.
If there are multiple decompositions, print any.
4
1 2
2 3
3 4
Yes
1
1 4
6
1 2
2 3
3 4
2 5
3 6
No
5
1 2
1 3
1 4
1 5
Yes
4
1 2
1 3
1 4
1 5
The tree from the first example is shown on the picture below:
The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
The tree from the second example is shown on the picture below:
We can show that there are no valid decompositions of this tree.
The tree from the third example is shown on the picture below:
The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
【题意】
给一个无向边的树,要求拆成若干条简单路径,并且这些路径都经过一个公共点。给出任意一个解决方案,如不存在输出No。
【分析】
所有的路径都有公共点,如果解决方案存在的话,那么倒着推回去,把公共点看成根节点,这棵树一定是所有的路径都从根结点出发,且都不分叉的,因为在满足这个性质时才能拆分,如果不满足,则一定有一条路径不经过根节点。
所以检查一棵树能否拆分,只用检查分叉点是否唯一就行了。而拆下来的路径,一端一定是根结点,而另一端就是这个树的所有叶子结点。
【代码】
#include<stdio.h>
#define N_max 100005 int cnt[N_max] = { 0 };//记录所有点的度数
int end[N_max] = { 0 }, ne=0;//记录所有端点序号 int main() {
int n;
scanf("%d", &n);
int a1, a2;
for (int i = 0; i < n - 1; ++i) {
scanf("%d %d", &a1, &a2);
cnt[a1]++;
cnt[a2]++;
}
//检查分叉处是否唯一,并记录到aim
int aim = -1;
for (int i = 1; i <= n; ++i) {
if (cnt[i] >= 3) {
if (aim == -1) aim = i;
else {
printf("No");
return 0;
}
}
//顺带记录端点
if (cnt[i] == 1)end[ne++]=i;
} printf("Yes\n");
//没有分叉,只有一条路径,直接输出两端
if (aim == -1) {
printf("1\n%d %d\n",end[0] ,end[1]);
return 0;
}
//将分叉点看成根节点,每一条边都是从根出发的,拆下来就行了
printf("%d\n", ne);
for (int t = 0; t < ne; ++t) {
printf("%d %d\n", aim, end[t]);
}
return 0;
}
codeforces 981 C.Useful Decomposition的更多相关文章
- Codeforces 981 D.Bookshelves(数位DP)
Codeforces 981 D.Bookshelves 题目大意: 给n个数,将这n个数分为k段,(n,k<=50)分别对每一段求和,再将每个求和的结果做与运算(&).求最终结果的最大 ...
- Codeforces 981 E - Addition on Segments
E - Addition on Segments 思路: dp dp[i]表示构成i的区间的右端点 先将询问按r排序 然后,对于每次询问,每次枚举 i 从 n-x 到 1,如果dp[i] >= ...
- Codeforces 981 共同点路径覆盖树构造 BFS/DP书架&最大值
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- [CodeForces]981C Useful Decomposition
李煜东dalao今天给我们讲课了QwQ ppt上一道题 英文题说一下题意吧,以后又看不懂了 将一棵树分割成多个简单路径,每个边只能在一条路径上,但至少有一个公共节点. 输出简单路径分割方法/No 由题 ...
- Codeforces Avito Code Challenge 2018 D. Bookshelves
Codeforces Avito Code Challenge 2018 D. Bookshelves 题目连接: http://codeforces.com/contest/981/problem/ ...
- Codeforces 981D Bookshelves(按位贪心+二维DP)
题目链接:http://codeforces.com/contest/981/problem/D 题目大意:给你n本书以及每本书的价值,现在让你把n本书放到k个书架上(只有连续的几本书可以放到一个书架 ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
随机推荐
- SpaceVim 语言模块 elm
原文连接: https://spacevim.org/cn/layers/lang/elm/ 模块简介 功能特性 依赖安装及启用模块 依赖安装 启用模块 快捷键 语言专属快捷键 交互式编程 模块简介 ...
- 成都Uber优步司机奖励政策(2月24日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 佛山Uber优步司机奖励政策(12月14日到12月20日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Ruby数据类型
数字类型 书写整数时,可以根据需要在整数之间任意加入下划线而不会影响数字的值 a=123_45_78 puts a # => 12345678 to_i 截掉小数点之后的数字取整 内置Math模 ...
- Android事件分发机制浅析(1)
本文来自网易云社区 作者:孙有军 事件机制是Android中一个比较复杂且重要的知识点,比如你想自定义拦截事件,或者某系组件中嵌套了其他布局,往往会出现这样那样的事件冲突,坑爹啊!!事件主要涵盖onT ...
- hive 更改列的位置时遇到的问题
hive > desc formatted tb_fq; OK col_name data_type comment # col_name data_type comment name stri ...
- vue2组件之间双向数据绑定问题
最近在使用element-ui的dialog组件二次封装成独立组件使用时,子组件需要将关闭dialog状态返回给父组件,简单的说就是要实现父子组件之间的数据双向绑定问题. 大致代码如下: 1,父组件 ...
- javaweb(九)—— 通过Servlet生成验证码图片
一.BufferedImage类介绍 生成验证码图片主要用到了一个BufferedImage类,如下:
- 「日常训练」Duff in the Army (Codeforces Round #326 Div.2 E)
题意(CodeForces 588E) 给定一棵\(n\)个点的树,给定\(m\)个人(\(m\le n\))在哪个点上的信息,每个点可以有任意个人:然后给\(q\)个询问,每次问\(u\)到\(v\ ...
- cf#516A. Make a triangle!(三角形)
http://codeforces.com/contest/1064/problem/A 题意:给出三角形的三条边,问要让他组成三角形需要增加多少长度 题解:规律:如果给出的三条边不能组成三角形,那答 ...