感觉非常不可做,于是考虑有什么奇怪的性质。

  先考虑怎么求子集和mex。将数从小到大排序,假设已经凑出了0~n的所有数,如果下一个数>n+1显然mex就是n+1了,否则若其为x则可以凑出1~n+x所有数。

  对于区间查询,建棵主席树即可,每次查询权值线段树上lastn+2~n+1的区间,用区间和更新n,如果这段区间没有数则mex为n+1。因为每次n的增量都是在lastn+2~n+1这一段的,所以每查询两次n会翻一倍以上,复杂度O(nlog2n)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define inf 1000000000
int n,m,a[N],root[N],cnt;
struct data{int l,r,x;
}tree[N<<];
void ins(int &k,int l,int r,int x)
{
tree[++cnt]=tree[k],k=cnt;tree[k].x+=x;
if (l==r) return;
int mid=l+r>>;
if (x<=mid) ins(tree[k].l,l,mid,x);
else ins(tree[k].r,mid+,r,x);
}
int query(int x,int y,int l,int r,int p,int q)
{
if (!y) return ;
if (p==l&&q==r) return tree[y].x-tree[x].x;
int mid=l+r>>;
if (q<=mid) return query(tree[x].l,tree[y].l,l,mid,p,q);
else if (p>mid) return query(tree[x].r,tree[y].r,mid+,r,p,q);
else return query(tree[x].l,tree[y].l,l,mid,p,mid)+query(tree[x].r,tree[y].r,mid+,r,mid+,q);
}
int getans(int l,int r)
{
int sum=,last=-;
while (sum<inf)
{
int x=query(root[l],root[r],,inf,last+,sum+);
if (!x) return sum+;
else last=sum,sum+=x;
}
return sum;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4299.in","r",stdin);
freopen("bzoj4299.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
root[i]=root[i-];
ins(root[i],,inf,a[i]);
}
m=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
printf("%d\n",getans(x-,y));
}
return ;
}

BZOJ4299 Codechef FRBSUM(主席树)的更多相关文章

  1. BZOJ4299: Codechef FRBSUM(主席树)

    题意 题目链接 数集S的ForbiddenSum定义为无法用S的某个子集(可以为空)的和表示的最小的非负整数. 例如,S={1,1,3,7},则它的子集和中包含0(S’=∅),1(S’={1}),2( ...

  2. bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...

  3. BZOJ.4299.Codechef FRBSUM(主席树)

    题目链接 记mx为最大的满足1~mx都能组成的数. 考虑当前能构成1~v中的所有数,再加入一个数x,若x>v+1,则mx=v,x不会产生影响:否则x<=v+1,则新的mx=x+v. 对于区 ...

  4. [BZOJ4408&&BZOJ4299][FJOI2016 && Codechef]神秘数&&FRBSUM(主席树)

    4299: Codechef FRBSUM Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 550  Solved: 351[Submit][Statu ...

  5. BZOJ4299 : Codechef FRBSUM

    若$[0,i]$的数都可以得到,那么$[1,所有不大于i+1的数的和]$的数都可以得到. 如此暴力枚举答案,用可持久化线段树支持查询,因为每次数字至少翻一倍,所以复杂度为$O(m\log^2n)$. ...

  6. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  7. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  8. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  9. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

随机推荐

  1. OpenCV代码提取:dft函数的实现

    The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...

  2. 16 pep8 编码规范

    pep8 编码规范 Python Enhancement Proposals :python改进方案 https://www.python.org/dev/peps/ 1. 每级缩进用4个空格. 括号 ...

  3. oradebug 的学习 一

        说明 oradebug主要是给oracle支持人员使用的,尽管很早便有,但oracle官网很少有记载.他是个sql*plus命令行工具,有sysdba的权限就可以登入,无需特别设置.他可以被用 ...

  4. 如何往eclipse中导入maven项目

    现在公司中大部分项目可能都是使用maven来构建,假如现在摆在你面前有一个maven的项目,如果你要学习它,如何将它导入到像eclipse这样的集成开发工具中呢,以项目public_class_1为例 ...

  5. JDK源码分析:Object.java

    一. 序言 Object.java是一切类的基类,所以了解该类有一定的必要 二 .属性及方法分析 方法列表: private static native void registerNatives(); ...

  6. [Clr via C#读书笔记]Cp8方法

    Cp8方法 构造器 作用就是初始化所有成员字段:.ctor:派生类和基类都有自己的构造函数.默认有一个无参数的构造函数,值字段初始化为0,引用字段初始化为null:可以有多个构造器: 值类型的初始化其 ...

  7. vue 与jq 的对比

    vue.react和angular,众所周知,他们是前端框架的3个大佬.这篇主要想对比一下用vue和用jq的区别,至于和其他框架的对比,我想vue的官网说的更为详细. 我算是独自用vue写过一个小型项 ...

  8. Elasticsearch 评分score计算中的Boost 和 queryNorm

    本来没有这篇文章,在公司分享ES的时候遇到一个问题,使用boost的时候,怎么从评分score中知道boost的影响. 虽然我们从查询结果可以直观看到,boost起了应有的作用,但是在explain的 ...

  9. 《机器学习实战》笔记——决策树(ID3)

    现在要介绍的是ID3决策树算法,只适用于标称型数据,不适用于数值型数据. 决策树学习算法最大的优点是,他可以自学习,在学习过程中,不需要使用者了解过多的背景知识.领域知识,只需要对训练实例进行较好的标 ...

  10. Thunder——基于NABCD评价“欢迎来怼”团队作品

    基于NABCD N——need需求 对于开设了软件工程课并且正在进行教学活动的老师和同学,除了在写作业时会打开电脑进行操作,平时我们更希望可以通过一些简单方便的方法来查看有关作业的内容,比如查看一下老 ...