题目大意:有$n$个数,每个数为$0$或$1$,给你其中一些关系,一个关系形如其中几个数的异或和是多少,问最少知道前几个关系就可以得出每个数是什么,并输出每个数

题解:异或方程组,和高斯消元差不多,就是把加减改成了异或。

卡点:用$bitset$优化,输出时输反了

C++ Code:

#include <algorithm>
#include <iostream>
#include <bitset>
#define maxn 1010
#define maxm 2010
int n, m, ans;
std::bitset<maxn> s[maxm];
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
for (int i = 1, x; i <= m; i++) {
std::cin >> s[i] >> x;
s[i] <<= 1; s[i][n + 1] = x;
}
for (int i = 1, pos; i <= n; i++) {
for (pos = i; pos <= m; pos++) if (s[pos][i]) break;
if (pos > m) {
std::cout << "Cannot Determine\n";
return 0;
}
ans = std::max(ans, pos);
std::swap(s[i], s[pos]);
for (int j = 1; j <= m; j++) if (i != j && s[j][i]) s[j] ^= s[i];
}
std::cout << ans << '\n';
for (int i = n; i; i--) std::cout << (s[i][n + 1] ? "?y7M#\n" : "Earth\n");
return 0;
}

  

[洛谷P2447][SDOI2010]外星千足虫的更多相关文章

  1. 洛谷 P2447 [SDOI2010]外星千足虫

    P2447 [SDOI2010]外星千足虫 题目描述 公元2089年6月4日,在经历了17年零3个月的漫长旅行后,“格纳格鲁一号”载人火箭返回舱终于安全着陆.此枚火箭由美国国家航空航天局(NASA)研 ...

  2. 洛谷P2447 [SDOI2010]外星千足虫(异或方程组)

    题意 题目链接 Sol 异或高斯消元的板子题. bitset优化一下,复杂度\(O(\frac{nm}{32})\) 找最优解可以考虑高斯消元的过程,因为异或的特殊性质,每次向下找的时候找到第一个1然 ...

  3. 洛咕 P2447 [SDOI2010]外星千足虫

    一开始以为是异或高斯消元,实际上是简单线性基. 直接往线性基里插入,直到线性基满了就解出来了. // luogu-judger-enable-o2 #include<bits/stdc++.h& ...

  4. 【洛谷P2447】外星千足虫

    题目大意:给定一个 M 个含 N 个未知数的异或方程组,保证有解,若存在唯一解,给出至少需要几个方程才能得出唯一解,若不存在,直接输出不存在. 题解:异或方程组也满足类似初等行变换的操作,只不过所有的 ...

  5. P2447 [SDOI2010]外星千足虫 (高斯消元)

    题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...

  6. 【P2447 [SDOI2010]外星千足虫】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2447 dalao们都说简单...解异或方程组 可我不是dalao qwq #include <algo ...

  7. P2447 [SDOI2010]外星千足虫

    怎么说呢? 因为是在mod 2 意义下的吗(一般是遇到二就可能是位运行算或二分图) 就可以利用异或计算. 因为奇数和偶数在二进制上就用判断最后一位就可以了 然后因为异或符合交换律和结合律 直接消元就可 ...

  8. 【题解】Luogu P2447 [SDOI2010]外星千足虫

    原题传送门 根据题意,题目给的每个操作就相当于异或上选中的那几只虫子的足数(mod 2)等于0/1 这是一个异或方程组,珂以用高斯消元解出每个虫子的足数(mod 2).所需最小次数或判断有多解 但是看 ...

  9. Luogu P2447 [SDOI2010]外星千足虫 高斯消元

    链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...

随机推荐

  1. Wireshark对HTTPS数据的解密

    本文来自网易云社区 之前有介绍<wireshark抓包分析--TCP/IP协议>,然后某天有人问我,示例里是HTTP的,如果是HTTPS,你可以抓包分析吗?基于好奇,我查阅了下相关资料,把 ...

  2. Python字符串操作大全(非常全!!!)

    1. python编程里字符串的内置方法(非常全) capitalize() 把字符串的第一个字符改为大写 casefold() 把整个字符串的所有字符改为小写 center(width) 将字符串居 ...

  3. TPO-15 C2 Performance on a biology exam

    TPO-15 C2 Performance on a biology exam 第 1 段 1.Listen to part of a conversation between a Student a ...

  4. linux 学习总结---- mysql 总结

    用户的创建 ---->修改 ---->删除用户 create alter drop (数据定义语言 DDL) 授权: insert update delete grant *.* revo ...

  5. win10下搭建私链

    首先要下载geth,下载地址:https://gethstore.blob.core.windows.net/builds/geth-windows-amd64-1.7.0-6c6c7b2a.exe ...

  6. lsscsi命令详解

    基础命令学习目录首页 lsscsi包默认是不安装的.lsscsi包安装完之后,lsscsi命令就可以使用了.lsscsi命令(lsscsi -t -L)能很方便的看出哪些是固态硬盘(SSD),哪些是S ...

  7. Python3 循环表达式

    一 While循环 基本循环 while 条件: 执行内容 #循环体 ... #循环体 ... #循环体 # 若条件为真,执行循环体内容 # 若条件为假,不执行循环体内容 实例1(Python 3.0 ...

  8. wpa_supplicant上行接口浅析

    摘自http://blog.csdn.net/fxfzz/article/details/6176414 wpa_supplicant提供的接口 从通信层次上划分, 上行接口:wpa_supplica ...

  9. mysql 复杂查询

    1.同一个表下多次查询: sql语句: select b.* ,(select name from exh_common.medicine_type a where b.p_id = a.id) as ...

  10. asp.net .net4.0使用异步编程

    "; Action<object> ac = (object obj) => { Debug.WriteLine("睡眠开始:" + DateTime. ...