题目大意:有$n$个数,每个数为$0$或$1$,给你其中一些关系,一个关系形如其中几个数的异或和是多少,问最少知道前几个关系就可以得出每个数是什么,并输出每个数

题解:异或方程组,和高斯消元差不多,就是把加减改成了异或。

卡点:用$bitset$优化,输出时输反了

C++ Code:

#include <algorithm>
#include <iostream>
#include <bitset>
#define maxn 1010
#define maxm 2010
int n, m, ans;
std::bitset<maxn> s[maxm];
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
for (int i = 1, x; i <= m; i++) {
std::cin >> s[i] >> x;
s[i] <<= 1; s[i][n + 1] = x;
}
for (int i = 1, pos; i <= n; i++) {
for (pos = i; pos <= m; pos++) if (s[pos][i]) break;
if (pos > m) {
std::cout << "Cannot Determine\n";
return 0;
}
ans = std::max(ans, pos);
std::swap(s[i], s[pos]);
for (int j = 1; j <= m; j++) if (i != j && s[j][i]) s[j] ^= s[i];
}
std::cout << ans << '\n';
for (int i = n; i; i--) std::cout << (s[i][n + 1] ? "?y7M#\n" : "Earth\n");
return 0;
}

  

[洛谷P2447][SDOI2010]外星千足虫的更多相关文章

  1. 洛谷 P2447 [SDOI2010]外星千足虫

    P2447 [SDOI2010]外星千足虫 题目描述 公元2089年6月4日,在经历了17年零3个月的漫长旅行后,“格纳格鲁一号”载人火箭返回舱终于安全着陆.此枚火箭由美国国家航空航天局(NASA)研 ...

  2. 洛谷P2447 [SDOI2010]外星千足虫(异或方程组)

    题意 题目链接 Sol 异或高斯消元的板子题. bitset优化一下,复杂度\(O(\frac{nm}{32})\) 找最优解可以考虑高斯消元的过程,因为异或的特殊性质,每次向下找的时候找到第一个1然 ...

  3. 洛咕 P2447 [SDOI2010]外星千足虫

    一开始以为是异或高斯消元,实际上是简单线性基. 直接往线性基里插入,直到线性基满了就解出来了. // luogu-judger-enable-o2 #include<bits/stdc++.h& ...

  4. 【洛谷P2447】外星千足虫

    题目大意:给定一个 M 个含 N 个未知数的异或方程组,保证有解,若存在唯一解,给出至少需要几个方程才能得出唯一解,若不存在,直接输出不存在. 题解:异或方程组也满足类似初等行变换的操作,只不过所有的 ...

  5. P2447 [SDOI2010]外星千足虫 (高斯消元)

    题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...

  6. 【P2447 [SDOI2010]外星千足虫】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2447 dalao们都说简单...解异或方程组 可我不是dalao qwq #include <algo ...

  7. P2447 [SDOI2010]外星千足虫

    怎么说呢? 因为是在mod 2 意义下的吗(一般是遇到二就可能是位运行算或二分图) 就可以利用异或计算. 因为奇数和偶数在二进制上就用判断最后一位就可以了 然后因为异或符合交换律和结合律 直接消元就可 ...

  8. 【题解】Luogu P2447 [SDOI2010]外星千足虫

    原题传送门 根据题意,题目给的每个操作就相当于异或上选中的那几只虫子的足数(mod 2)等于0/1 这是一个异或方程组,珂以用高斯消元解出每个虫子的足数(mod 2).所需最小次数或判断有多解 但是看 ...

  9. Luogu P2447 [SDOI2010]外星千足虫 高斯消元

    链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...

随机推荐

  1. .net core中Primitives.StringValues 处理

    参考地址:https://stackoverflow.com/questions/36297329/primitives-stringvalues-how-to-deserialize-value-t ...

  2. LeetCode:35. Search Insert Position(Easy)

    1. 原题链接 https://leetcode.com/problems/search-insert-position/description/ 2. 题目要求 给定一个已经排好序的数组和一个目标值 ...

  3. Redis系列四 Redis常见配置

    redis.conf常见配置 参数说明redis.conf 配置项说明如下:1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程  daemonize no2. ...

  4. DXF结构查看小工具,DXF表格导出工具,CAD文档查看

    用C#写了个查看DXF结构的工具,另做了个DXF表格(普通直线画的)导出为CSV表格工具发出来方便各位机械工程师,上几个图: 程序下载: 程序,需要.NET 4.0执行环境 https://pan.b ...

  5. Qt-网络与通信-获取本机网络信息

    在网络应用中,经常需要获取本机主机名和IP地址和硬件地址等信息.运用QHostInfo.QNetworkInterface.QNetworkAddressEntry可以获得本机的网络信息. 上运行截图 ...

  6. katalon系列六:Katalon Studio Web UI关键字讲解

    在一个Test Case里,点左上Add-Web UI Keyword,可以添加一行新的命令. 像Click.setText.Delay这些最基本的,大家还是看看官方的API文档吧,望文知义,如果是纯 ...

  7. 第四模块:网络编程进阶&数据库开发 第1章·网络编程进阶

    01-进程与程序的概念 02-操作系统介绍 03-操作系统发展历史-第一代计算机 04-操作系统发展历史-批处理系统 05-操作系统发展历史-多道技术 06-操作系统发展历史-分时操作系统 07-总结 ...

  8. ajax 个人理解 学习笔记

    W:Ajax Q:异步网络请求.无刷新请求数据. W:ajax的实现流程如下: Q: 创建XHR对象 调用open()方法,创建请求 调用send()方法,发送请求 捕获请求状态,判断请求结果 获取数 ...

  9. 【转】MMORPG游戏服务器技能系统设计:表格字段与技能程序框架

    本文主要从一个程序员的角度阐述一下mmorpg服务器技能系统的程序框架设计,最近在做这个,就当做一个总结吧,其中某些概念可能没有解释清楚,欢迎大家拍砖讨论~ 技能其实是战斗系统的一个组成部分,战斗基本 ...

  10. 【转】MMO即时战斗:地图角色同步管理和防作弊实现

    ---转自CSDN 一.前言 无论是端游.页游.手游如果是采用了MMO即时战斗游戏模式,基本都会遇到同屏多角色实时移动.释放技能.战斗等场景,于是自然也需要实现如何管理同屏内各种角色的信息同步:例如角 ...