对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

看这个:http://blog.csdn.net/a_crazy_czy/article/details/50485082

不过有一点点小错误,这里0和1反了。

#include<cstdio>
#include<algorithm>
using namespace std;
int n,a,b,c,d,K;
bool notpri[50005];
int pri[50005],mu[50005],sum[50005];
typedef long long ll;
void shai_mu()//线性筛莫比乌斯函数,顺便做出前缀和
{
notpri[1]=1; mu[1]=1;
for(int i=2;i<=50000;i++){
if(!notpri[i]){
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0];j++){
if((ll)i*(ll)pri[j]>50000ll){
break;
}
notpri[i*pri[j]]=1;
mu[i*pri[j]]=-mu[i];
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}
}
}
sum[1]=mu[1];
for(int i=2;i<=50000;i++){
sum[i]=sum[i-1]+mu[i];
}
}
int calc(int n,int m){
if(n>m){
swap(n,m);
}
int res=0;
for(int i=1;i<=n/K;){
int j1=n/(n/(i*K))/K;
int j2=m/(m/(i*K))/K;
int j=min(j1,j2);
res+=(sum[j]-sum[i-1])*(n/(i*K))*(m/(i*K));
i=j+1;
}
return res;
}
int main(){
// freopen("bzoj2301.in","r",stdin);
shai_mu();
scanf("%d",&n);
for(;n;--n){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&K);
printf("%d\n",calc(b,d)-calc(b,c-1)-calc(a-1,d)+calc(a-1,c-1));
}
return 0;
}

【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b的更多相关文章

  1. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  2. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  3. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  4. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  6. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  7. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  8. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

  9. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  10. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

随机推荐

  1. winform Textbox像百度一下实现下拉显示

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  2. $.on方法与$.click()的区别

    1.$.on("click") 支持动态元素绑定事件,该事件是绑定到document上,只要符合条件的元素即可绑定事件,同时$.on()可以绑定多个事件 on方法 on(event ...

  3. Python第三方库matplotlib(2D绘图库)入门与进阶

    Matplotlib 一 简介: 二 相关文档: 三 入门与进阶案例 1- 简单图形绘制 2- figure的简单使用 3- 设置坐标轴 4- 设置legend图例 5- 添加注解和绘制点以及在图形上 ...

  4. 用tkinter实现的gui小工具

    import tkinter import requests import json from tkinter import * class FindLocation(object): def __i ...

  5. Mac下 Docker部署SpringBoot应用

    一.安装Docker环境 使用 Homebrew 安装 macOS 我们可以使用 Homebrew 来安装 Docker. Homebrew 的 Cask 已经支持 Docker for Mac,因此 ...

  6. selenium+python自动化78-autoit参数化与批量上传【转载】

    转至博客:上海-悠悠 前言前一篇autoit实现文件上传打包成.exe可执行文件后,每次只能传固定的那个图片,我们实际测试时候希望传不同的图片.这样每次调用的时候,在命令行里面加一个文件路径的参数就行 ...

  7. 《java并发编程实战》读书笔记1--线程安全性,内置锁,重入,状态

    什么是线程安全? 当多个线程访问某个类时,不管这些的线程的执行顺序如何,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的. 哈哈书上的解释,还是翻译过 ...

  8. 常用模块二(hashlib、configparser、logging)

    阅读目录 常用模块二 hashlib模块 configparse模块 logging模块   常用模块二 返回顶部 hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SH ...

  9. AC日记——[SDOI2009]HH的项链 洛谷 P1972

    [SDOI2009]HH的项链 思路: 莫队: 代码: #include <bits/stdc++.h> #define maxn 100005 #define maxm 400005 # ...

  10. 从零开始,学习web前端之HTML5开发

    什么是HTML5 HTML5是HTML最新的修订版本,2014年10月由万维网联盟(W3C)完成标准制定.是下一代 HTML 标准. 为什么要学习HTML5 HTML5定义了一系列新元素,如新语义标签 ...