uva748 - Exponentiation

  Exponentiation 

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of Rn where R is a real number (0.0 < R < 99.999) and n is an integer such that .

Input

The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.

Output

The output will consist of one line for each line of input giving the exact value of Rn. Leading zeros and insignificant trailing zeros should be suppressed in the output.

Sample Input

95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12

Sample Output

548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201

套用模版,注意小数的位数不足时要补0,后续0要清掉(其实对底数进行后续0清除就好了,因为出现后续0的唯一可能就是底数有后续0)

/*
高精度的幂。幂为低精度。
*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <climits>
using namespace std; #define maxn 30000 struct bign
{
int len, s[maxn]; bign()
{
memset(s, , sizeof(s));
len = ;
} bign(int num)
{
*this = num;
} bign(const char* num)
{
*this = num;
} bign operator = (int num)
{
char s[maxn];
sprintf(s, "%d", num);
*this = s;
return *this;
} bign operator = (const char* num)
{
len = strlen(num);
for (int i = ; i < len; i++) s[i] = num[len-i-] - '';
return *this;
} string str() const
{
string res = "";
for (int i = ; i < len; i++) res = (char)(s[i] + '') + res;
if (res == "") res = "";
return res;
} bign operator + (const bign& b) const
{
bign c;
c.len = ;
for (int i = , g = ; g || i < max(len, b.len); i++)
{
int x = g;
if (i < len) x += s[i];
if (i < b.len) x += b.s[i];
c.s[c.len++] = x % ;
g = x / ;
}
return c;
} void clean()
{
while(len > && !s[len-]) len--;
} bign operator * (const bign& b)
{
bign c; c.len = len + b.len;
for (int i = ; i < len; i++)
for (int j = ; j < b.len; j++)
c.s[i+j] += s[i] * b.s[j];
for (int i = ; i < c.len-; i++)
{
c.s[i+] += c.s[i] / ;
c.s[i] %= ;
}
c.clean();
return c;
} bign operator - (const bign& b)
{
bign c; c.len = ;
for (int i = , g = ; i < len; i++)
{
int x = s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= )
g = ;
else
{
g = ;
x += ;
}
c.s[c.len++] = x;
}
c.clean();
return c;
} bool operator < (const bign& b) const
{
if (len != b.len) return len < b.len;
for (int i = len-; i >= ; i--)
if (s[i] != b.s[i]) return s[i] < b.s[i];
return false;
} bool operator > (const bign& b) const
{
return b < *this;
} bool operator <= (const bign& b)
{
return !(b > *this);
} bool operator == (const bign& b)
{
return !(b < *this) && !(*this < b);
} bool operator != (const bign& b)
{
return (b < *this) || (*this < b);
} bign operator += (const bign& b)
{
*this = *this + b;
return *this;
}
}; istream& operator >> (istream &in, bign& x)
{
string s;
in >> s;
x = s.c_str();
return in;
} ostream& operator << (ostream &out, const bign& x)
{
out << x.str();
return out;
} int main()
{
bign a,ans;
int b;
string c; while (cin >> c >> b)
{
ans = ; int index = c.find('.'); if (index != -)
{
//后续0
for (int i = c.size()-; i > index; --i)
{
if (c[i] == '')
c.erase(i, );
else
break;
} c.erase(index, );
} index = c.size()-index; index *= b; a = c.c_str(); a.clean(); for (int i = ; i < b; ++i)
{
ans = ans*a;
} string s = ans.str(); //补0
int dif = s.size()-index;
if (dif >= )
{
s.insert(s.end()-index, '.');
}
else
{
for (int i = ; i < -dif; ++i)
{
s = '' + s;
}
s = '.' + s;
} cout << s << endl;
}
}

uva748 - Exponentiation 高精度小数的幂运算的更多相关文章

  1. 【POJ 1001】Exponentiation (高精度乘法+快速幂)

    BUPT2017 wintertraining(15) #6A 题意 求\(R^n\) ( 0.0 < R < 99.999 )(0 < n <= 25) 题解 将R用字符串读 ...

  2. hdu 1063 Exponentiation (高精度小数乘法)

    //大数继续,额,要吐了. Problem Description Problems involving the computation of exact values of very large m ...

  3. BigDecimal类(高精度小数)

    位置:java.math.BigDecimal 作用:提供高精度小数数据类型及相关操作 一.基本介绍 BigDecimal为不可变的.任意精度的有符号十进制数,其值为(unscaledValue * ...

  4. 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=

    # ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...

  5. Modular_exponentiation模幂运算

    https://en.wikipedia.org/wiki/Modular_exponentiation 蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心 ...

  6. POJ1026 Cipher(置换的幂运算)

    链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  7. 程序设计入门——C语言 第5周编程练习 1高精度小数(10分)

    1 高精度小数(10分) 题目内容: 由于计算机内部表达方式的限制,浮点运算都有精度问题,为了得到高精度的计算结果,就需要自己设计实现方法. (0,1)之间的任何浮点数都可以表达为两个正整数的商,为了 ...

  8. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  9. 迭代加深搜索 codevs 2541 幂运算

    codevs 2541 幂运算  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...

随机推荐

  1. 操作系统开发之——一个简单的Bootsect

    先吓唬一下读者朋友呵呵,直接发代码:(这是UOS操作系统的Bootsect)(有兴趣的朋友能够增加我们,联系方式在最后) ;------------------------------ ;文件名称:B ...

  2. ant Select 联动

    1.代码 /** * 选择监区 组件 */ import React, { PureComponent } from 'react'; import PropTypes from 'prop-type ...

  3. nginx听课随记杂记

    今天听了个公开课,里面讲了异步非阻塞,说的不是很清楚,网上有个人写的很好:http://blog.csdn.net/feitianxuxue/article/details/8936802 提到了用n ...

  4. json 生成 json字符串

    生成json格式的字符串. 需要相关包 json-lib-2.3-jdk15.jar morph-1.1.1.jar morph-sandbox-1.1.1.jar ezmorph-1.0.6.jar ...

  5. (C#)Windows Shell 外壳编程系列1 - 基础,浏览一个文件夹

    1 - 基础,浏览一个文件夹 我们知道,在win32中是以外壳名字空间的形式来组织文件系统的,在外壳名字空间里的每一个对象(注)都实现了一个IShellFolder的接口,通过这个接口我们可以直接查询 ...

  6. kettle--组件(2)--计算器

    组件如下: 对计算类型的说明如下: The table below contains descriptions associated with the calculator step: Functio ...

  7. ubuntu安装Skype 4.3

    Install Skype 4.3 Step 1: Remove previous version sudo apt-get remove skype skype-bin:i386 skype:i38 ...

  8. List与String的相互转换

    List转字符串,用逗号隔开 List<string> list = new List<string>(); list.Add("a"); list.Add ...

  9. web前端--移动端适配总结

    转自:https://segmentfault.com/a/1190000011586301 作者:Devinnn meta标签到底做了什么事情 做过移动端适配的小伙伴一定有遇到过这行代码: < ...

  10. unity, UGUI Text outline

    UGUI Text的勾边效果是通过添加component实现的: Add Component->UI->Effects->Outline 参考:http://www.cnblogs. ...