Description

给定n个非负整数A[1], A[2], ……, A[n]。
对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数。求这些数(不包含A[i])中前k小的数。
注:xor对应于pascal中的“xor”,C++中的“^”。

Input

第一行2个正整数 n,k,如题所述。
以下n行,每行一个非负整数表示A[i]。

Output

共一行k个数,表示前k小的数。

Sample Input

4 5
1
1
3
4

Sample Output

0 2 2 5 5

HINT

【样例解释】

1 xor 1 = 0 (A[1] xor A[2])

1 xor 3 = 2 (A[1] xor A[3])

1 xor 4 = 5 (A[1] xor A[4])

1 xor 3 = 2 (A[2] xor A[3])

1 xor 4 = 5 (A[2] xor A[4])

3 xor 4 = 7 (A[3] xor A[4])

前5小的数:0 2 2 5 5

【数据范围】

对于100%的数据,2 <= n <= 100000; 1 <= k <= min{250000, n*(n-1)/2};

0 <= A[i] < 2^31

/*
由于trie数可以去出某个数与一坨数第k异或值,我们把每个数二进制拆分,用trie树储存起来。
维护一个堆,刚开始把每个数与其他数的第二小异或值放进去(第一小是与它本身),然后每次从堆中取数,再把取出来的数的下一个最小值放进去,因为每个异或值会被重复取两次,所以选择奇数次输出。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#define N 100010
using namespace std;
int a[N],ch[N*][],size[N*],n,k,cnt;
struct node{
int v,a,k;
};
bool operator < (node s1,node s2){
return s1.v>s2.v;
}
priority_queue<node> q;
void insert(int x){
int now=;
for(int i=;i>=;i--){
int t=x&(<<i);t>>=i;
if(!ch[now][t])ch[now][t]=++cnt;
now=ch[now][t];size[now]++;
}
}
int query(int x,int k){
int now=,tmp=;
for(int i=;i>=;i--){
int t=x&(<<i);t>>=i;
if(size[ch[now][t]]>=k)now=ch[now][t];
else k-=size[ch[now][t]],now=ch[now][t^],tmp+=(<<i);
}
return tmp;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
insert(a[i]);
}
for(int i=;i<=n;i++){
node x;
x.v=query(a[i],);x.k=;x.a=a[i];
q.push(x);
}
for(int i=;i<k*;i++){
node x=q.top();q.pop();
if(i&)printf("%d ",x.v);
x.k++;x.v=query(x.a,x.k);
q.push(x);
}
return ;
}

异或之(bzoj 3689)的更多相关文章

  1. bzoj 3689: 异或之 Trie+堆

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3689 题解: 利用一个优先队列存储当前取到的数 然后再写一颗支持查找异或的k大值的Tri ...

  2. BZOJ 3689 异或 Trie木+堆

    标题效果:特定n的数量,这种需求n数22 XOR的值前者k少 首先,我们建立了一个二进制的所有数字Trie木,您可以使用Trie木size域检查出一些其他的数字XOR值首先k少 然后,我们要保持一个堆 ...

  3. BZOJ 3689: 异或之

    字典树可以$o(logn)查找第k大$ 使用$可持久化Trie 区间查找第k大,然后首先把每个数异或之后的最小丢进小根堆中,然后一个一个取出,取出后就再丢次小,一共取k次$ 总的时间复杂度为$O(kl ...

  4. BZOJ 3689 异或之 (可持久化01Trie+堆)

    题目大意:给你一个序列,求出第$K$大的两两异或值 先建出来可持久化$01Trie$ 用一个$set$/堆存结构体,存某个异或对$<i,j>$的第二关键字$j$,以及$ai\;xor\;a ...

  5. BZOJ 3689: 异或之 可持久化trie+堆

    和超级钢琴几乎是同一道题吧... code: #include <bits/stdc++.h> #define N 200006 #define ll long long #define ...

  6. BZOJ 5495: [2019省队联测]异或粽子 (trie树)

    这题果然是原题[BZOJ 3689 异或之].看了BZOJ原题题解,发现自己sb了,直接每个位置维护一个值保存找到了以这个位置为右端点的第几大,初始全部都是1,把每个位置作为右端点能够异或出来的最大值 ...

  7. 【BZOJ】【3261】最大异或和

    可持久化Trie 嗯……同样搞个前缀异或和,然后将x与sum异或一下,就是在[l-1,r-1]中找x^sum的最大异或值了.同样可持久化Trie搞搞即可(模板还是没背全啊……sad /******** ...

  8. [BZOJ 4103] [Thu Summer Camp 2015] 异或运算 【可持久化Trie】

    题目链接:BZOJ - 4103 题目分析 THUSC滚粗之后一直没有写这道题,从来没写过可持久化Trie,发现其实和可持久化线段树都是一样的.嗯,有些东西就是明白得太晚. 首先Orz ZYF-ZYF ...

  9. BZOJ.4888.[TJOI2017]异或和(树状数组)

    BZOJ 洛谷 \(Description\) 求所有区间和的异或和. \(n\leq 10^5,\ \sum a_i\leq 10^6\). \(Solution\) 这样的题还是要先考虑按位做. ...

随机推荐

  1. JavaScript的客户端存储

    一.前言: 客户端存储实际上就是Web浏览器的记忆功能,通过浏览器的API实现数据存储到硬盘: 二.存储的不同形式: 1.Web存储:localStorage 和 sessionStorage 代表同 ...

  2. jQuery链式操作[转]

    用过jQuery的朋友都知道他强大的链式操作,方便,简洁,易于理解,如下 $("has_children").click(function(){ $(this).addClass( ...

  3. 用类(function(){})()实现点击显示index索引值的详解

    code: <script type="text/javascript"> ; i < ; i++){ var btn = document.createElem ...

  4. ETL基础1(概念)

    抽取(Extract): 一般抽取过程需要连接到不同的数据源,以便为随后的步骤提供数据.这一部分看上去简单而琐碎,实际上它是 ETL 解决方案的成功实施的一个主要障碍. 转换(Transform): ...

  5. 变量改变时PHP内核做了些什么?

    引言 内容来自于<Extending and Embedding PHP>- Chaper 3 - Memory Management,加上自己的理解,对php中变量的引用计数.写时复制, ...

  6. python3随记——字符编码

    1.1什么是字节 字节(Byte)是计算机信息技术用于计量存储容量的一种计量单位,也表示一些计算机编程语言中的数据类型和语言字符. 比特(bit)在计算机中最小的单位,在二进制位的电脑的系统中,每一b ...

  7. Windows10环境搭建Elasticsearch+Kibana+Marvel

    环境: Windows10企业版X64 Elasticsearch-2.4.1 Kibana-4.6.1 Marvel-2.0+ 步骤: 安装Elasticsearch:官网下载Elasticsear ...

  8. WinForm------PanelControl控件中使用Pen类画角圆矩形方法

    private void rightPanel_Paint(object sender, PaintEventArgs e) { Graphics g = e.Graphics; Pen p = ,, ...

  9. Bootstrap学习笔记

    Bootstrap提供了一套响应式.移动设备优先的流式栅格系统. Bootstrap把一个容器或整个网页平均分成了12列. 栅格系统必须放在.container或container-fluid中 样式 ...

  10. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...