题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1121

Complete the Sequence

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 451    Accepted Submission(s): 283

Problem Description
You probably know those quizzes in Sunday magazines: given the sequence 1, 2, 3, 4, 5, what is the next number? Sometimes it is very easy to answer, sometimes it could be pretty hard. Because these "sequence problems" are very popular, ACM wants to implement them into the "Free Time" section of their new WAP portal. 
ACM programmers have noticed that some of the quizzes can be solved by describing the sequence by polynomials. For example, the sequence 1, 2, 3, 4, 5 can be easily understood as a trivial polynomial. The next number is 6. But even more complex sequences, like 1, 2, 4, 7, 11, can be described by a polynomial. In this case, 1/2.n^2-1/2.n+1 can be used. Note that even if the members of the sequence are integers, polynomial coefficients may be any real numbers.

Polynomial is an expression in the following form:

P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0

. If aD <> 0, the number D is called a degree of the polynomial. Note that constant function P(n) = C can be considered as polynomial of degree 0, and the zero function P(n) = 0 is usually defined to have degree -1.
 
Input
There is a single positive integer T on the first line of input. It stands for the number of test cases to follow. Each test case consists of two lines. First line of each test case contains two integer numbers S and C separated by a single space, 1 <= S < 100, 1 <= C < 100, (S+C) <= 100. The first number, S, stands for the length of the given sequence, the second number, C is the amount of numbers you are to find to complete the sequence.

The second line of each test case contains S integer numbers X1, X2, ... XS separated by a space. These numbers form the given sequence. The sequence can always be described by a polynomial P(n) such that for every i, Xi = P(i). Among these polynomials, we can find the polynomial Pmin with the lowest possible degree. This polynomial should be used for completing the sequence.

 
Output
For every test case, your program must print a single line containing C integer numbers, separated by a space. These numbers are the values completing the sequence according to the polynomial of the lowest possible degree. In other words, you are to print values Pmin(S+1), Pmin(S+2), .... Pmin(S+C).

It is guaranteed that the results Pmin(S+i) will be non-negative and will fit into the standard integer type.

 
Sample Input
4
6 3
1 2 3 4 5 6
8 2
1 2 4 7 11 16 22 29
10 2
1 1 1 1 1 1 1 1 1 2
1 10
3
 
Sample Output
7 8 9
37 46
11 56
3 3 3 3 3 3 3 3 3 3
 
题解:
 
参考别人写的,跑了下样例帮助理解>-<:http://blog.csdn.net/wangjie_wang/article/details/9149683
 
ac代码:
 #include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int maxn = ; int s, c;
int f[maxn][maxn]; void init() {
memset(f, , sizeof(f));
} int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%d%d", &s, &c);
for (int i = ; i < s; i++) scanf("%d", &f[][i]);
for (int i = ; i <= s - ; i++) {
for (int j = ; j < s - i; j++) {
f[i][j] = f[i - ][j + ] - f[i - ][j];
}
}
for (int i = ; i <= c; i++) f[s - ][i] = f[s - ][i - ];
for (int i = s - ; i >= ; i--) {
for (int j = s - i; j < s + c - i; j++) {
f[i][j] = f[i][j - ] + f[i + ][j - ];
}
}
printf("%d", f[][s]);
for (int i = s + ; i < s + c; i++) printf(" %d", f[][i]);
printf("\n");
}
return ;
}
 

HDU 1121 Complete the Sequence 差分的更多相关文章

  1. HDOJ 1121 Complete the Sequence

    [题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...

  2. UVA 1546 - Complete the sequence!(差分法)

    UVA 1546 - Complete the sequence! 题目链接 题意:给定多项式前s项,求出后c项,要求尽量小 思路:利用差分法,对原序列求s - 1次差分,就能够发现规律,然后对于每多 ...

  3. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  4. Complete the Sequence[HDU1121]

    Complete the Sequence Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  5. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  6. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  7. Hdu 5496 Beauty of Sequence (组合数)

    题目链接: Hdu 5496 Beauty of Sequence 题目描述: 一个整数序列,除去连续的相同数字(保留一个)后,序列的和成为完美序列和.问:一个整数序列的所有子序列的完美序列和? 解题 ...

  8. Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) (C++,Java)

    Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) Hdu 5806 题意:给出一个数组,求区间第k大的数大于等于m的区间个数 #include<queue> # ...

  9. HDU 5063 Operation the Sequence(暴力)

    HDU 5063 Operation the Sequence 题目链接 把操作存下来.因为仅仅有50个操作,所以每次把操作逆回去执行一遍,就能求出在原来的数列中的位置.输出就可以 代码: #incl ...

随机推荐

  1. sign

    sign字段构成:登录类型(2Bytes) + userid(不定长,最长10Bytes,用户id或设备id) + time(10Bytes) + token(32Bytes).其中:token = ...

  2. Idea项目中常见错误及笔记(Old)

    1.Idea基础设置: File-->settings--> 1>修改字体:Font 2>修改编码格式:File Encodings(全部UTF-8,右下方复选框勾中--防止程 ...

  3. react-navigation的超级大坑

    本文针对react-navigation^3.0.0版本,版本不对的话,请不要看本文,直接看官方英文文档 ​ 最近一直在学习RN,没找到什么好的视频,所以一直看文档,一路上来虽然遇到一些乱七八糟的bu ...

  4. 将Vue插件发布到npm的完整记录

    前言 ​ 面对越来越多的组件库,越开越多的ui库,学会发布库已经是前端必须会的事情了,也算是为开源贡献一份力量,在网络上看了一些前者的文章,也算的发布成功了,虽然还存在很多问题,路不积跬步,无以至千里 ...

  5. Git最常用的命令 总结

    stage/unstage  git add xxx.xx 和 git reset HEAD xxx.xx 前者将本地的修改提交到index(此操作成为stage,参考备注1),后者将已提交到inde ...

  6. Linux入门第一天——基本概述与环境搭建

     一.Linux简介 1.历史 Linux内核最初只是由芬兰人李纳斯·托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的. Linux是一套免费使用和自由传播的类Unix操 ...

  7. 2016-2017-2 20155329 实验四 Android 开发

    2016-2017-2 20155329 实验四 Android 开发 ## 任务一:Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBI ...

  8. 1009 产生数 2002年NOIP全国联赛普及组

    1009 产生数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 给出一个整数 n(n< ...

  9. 在azure windows虚拟机上安装iis

    在 dashboard-添加角色和功能-一直往下点就好了,后”选择安装类型“页面 中选择[基于角色或基于功能的安装],安装完成后 在浏览器输入 http://localhost/ 就可以正常访问网站了 ...

  10. 如何在存储过程的IN操作中传递字符串变量

    原始SQL如下: SELECT MONTH(OrderTime) AS datetype, SUM(DeliveryCount) AS decount, Region FROM (SELECT dbo ...