题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1121

Complete the Sequence

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 451    Accepted Submission(s): 283

Problem Description
You probably know those quizzes in Sunday magazines: given the sequence 1, 2, 3, 4, 5, what is the next number? Sometimes it is very easy to answer, sometimes it could be pretty hard. Because these "sequence problems" are very popular, ACM wants to implement them into the "Free Time" section of their new WAP portal. 
ACM programmers have noticed that some of the quizzes can be solved by describing the sequence by polynomials. For example, the sequence 1, 2, 3, 4, 5 can be easily understood as a trivial polynomial. The next number is 6. But even more complex sequences, like 1, 2, 4, 7, 11, can be described by a polynomial. In this case, 1/2.n^2-1/2.n+1 can be used. Note that even if the members of the sequence are integers, polynomial coefficients may be any real numbers.

Polynomial is an expression in the following form:

P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0

. If aD <> 0, the number D is called a degree of the polynomial. Note that constant function P(n) = C can be considered as polynomial of degree 0, and the zero function P(n) = 0 is usually defined to have degree -1.
 
Input
There is a single positive integer T on the first line of input. It stands for the number of test cases to follow. Each test case consists of two lines. First line of each test case contains two integer numbers S and C separated by a single space, 1 <= S < 100, 1 <= C < 100, (S+C) <= 100. The first number, S, stands for the length of the given sequence, the second number, C is the amount of numbers you are to find to complete the sequence.

The second line of each test case contains S integer numbers X1, X2, ... XS separated by a space. These numbers form the given sequence. The sequence can always be described by a polynomial P(n) such that for every i, Xi = P(i). Among these polynomials, we can find the polynomial Pmin with the lowest possible degree. This polynomial should be used for completing the sequence.

 
Output
For every test case, your program must print a single line containing C integer numbers, separated by a space. These numbers are the values completing the sequence according to the polynomial of the lowest possible degree. In other words, you are to print values Pmin(S+1), Pmin(S+2), .... Pmin(S+C).

It is guaranteed that the results Pmin(S+i) will be non-negative and will fit into the standard integer type.

 
Sample Input
4
6 3
1 2 3 4 5 6
8 2
1 2 4 7 11 16 22 29
10 2
1 1 1 1 1 1 1 1 1 2
1 10
3
 
Sample Output
7 8 9
37 46
11 56
3 3 3 3 3 3 3 3 3 3
 
题解:
 
参考别人写的,跑了下样例帮助理解>-<:http://blog.csdn.net/wangjie_wang/article/details/9149683
 
ac代码:
 #include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int maxn = ; int s, c;
int f[maxn][maxn]; void init() {
memset(f, , sizeof(f));
} int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%d%d", &s, &c);
for (int i = ; i < s; i++) scanf("%d", &f[][i]);
for (int i = ; i <= s - ; i++) {
for (int j = ; j < s - i; j++) {
f[i][j] = f[i - ][j + ] - f[i - ][j];
}
}
for (int i = ; i <= c; i++) f[s - ][i] = f[s - ][i - ];
for (int i = s - ; i >= ; i--) {
for (int j = s - i; j < s + c - i; j++) {
f[i][j] = f[i][j - ] + f[i + ][j - ];
}
}
printf("%d", f[][s]);
for (int i = s + ; i < s + c; i++) printf(" %d", f[][i]);
printf("\n");
}
return ;
}
 

HDU 1121 Complete the Sequence 差分的更多相关文章

  1. HDOJ 1121 Complete the Sequence

    [题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...

  2. UVA 1546 - Complete the sequence!(差分法)

    UVA 1546 - Complete the sequence! 题目链接 题意:给定多项式前s项,求出后c项,要求尽量小 思路:利用差分法,对原序列求s - 1次差分,就能够发现规律,然后对于每多 ...

  3. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  4. Complete the Sequence[HDU1121]

    Complete the Sequence Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  5. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  6. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  7. Hdu 5496 Beauty of Sequence (组合数)

    题目链接: Hdu 5496 Beauty of Sequence 题目描述: 一个整数序列,除去连续的相同数字(保留一个)后,序列的和成为完美序列和.问:一个整数序列的所有子序列的完美序列和? 解题 ...

  8. Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) (C++,Java)

    Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) Hdu 5806 题意:给出一个数组,求区间第k大的数大于等于m的区间个数 #include<queue> # ...

  9. HDU 5063 Operation the Sequence(暴力)

    HDU 5063 Operation the Sequence 题目链接 把操作存下来.因为仅仅有50个操作,所以每次把操作逆回去执行一遍,就能求出在原来的数列中的位置.输出就可以 代码: #incl ...

随机推荐

  1. kafka搭建到配置borker集群(项目开发-区块链)

    (以下分享了搭建kafka需要使用到的命令,差不多齐了,这里没有提到kafka-manager ,同学可以在网上自行查找) 最近公司的项目比较紧,先说下使用kafka的用处: 要替代原来 撮合引擎发数 ...

  2. 三、spring成长之路——springIOC容器详解(上)

    目录 一.springIOC 一.springIOC 控制反转和依赖注入: ​ 简单的说就是将对象的创建,属性的的设置交给spring容器进行管理,而不再由用户自己创建,当用户需要使用该接口或者类的时 ...

  3. DP_最长公共子序列/动规入门

    学自:https://open.163.com/movie/2010/12/L/4/M6UTT5U0I_M6V2U1HL4.html 最长公共子序列:(本文先谈如何求出最长公共子序列的长度,求出最长公 ...

  4. React with webpack - part 1

    http://jslog.com/2014/10/02/react-with-webpack-part-1/

  5. 20155230 实验二《Java面向对象程序设计》实验报告

    20155230 实验二<Java面向对象程序设计>实验报告 一.单元测试 三种代码 知道了伪代码.产品代码.测试代码的关系和用途,并根据老师的例子,按测试代码调试了产品代码. 值得注意的 ...

  6. 20155233 2016-2017-2《Java程序设计》课程总结

    20155233 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:预习去写博客,如何达到理想的师生关系. 预备作业2:对自己C语言的学习进行了解与认识. ...

  7. 分享daocloud联合创始人陈齐彦关于docker的一段阐述

    罗比,本名陈齐彦,他在加入DaoCloud之前是EMC中国研究院的总架构师,云平台及应用实验室的创始人.谈及创业的初心,他激动了起来: 容器这东西和当年Hadoop一样,是互联网技术对企业IT技术的逆 ...

  8. 3060 抓住那头奶牛 USACO

    3060 抓住那头奶牛 USACO 时间限制: 1 s 空间限制: 16000 KB 题目等级 : 黄金 Gold 题目描述 Description 农夫约翰被告知一头逃跑奶牛的位置,想要立即抓住它, ...

  9. python3工作环境部署+spyder3+jupyter notebook

    1.python3安装 1)官网去下载python3.7版本,双击安装,只要注意勾选写到PATH就行,其它直接NEXT. 2)安装完成,CMD键入 python 回车,跳出python界面就是成功. ...

  10. 将 Python3 文件打包成 exe 文件

    我们用 Python 写好的代码,如何给别人在没有配置 Python 环境的情况下直接使用呢?尤其是面向 windows 众. 因为 Python 是一门解释性的语言,离开了 Python 解释器,P ...