【BZOJ4568】幸运数字(线性基,树链剖分,ST表)

题面

BZOJ

Description

A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个

幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划

乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。

在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸

运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,

游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。

有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5

和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中

可以保留的最大幸运值是多少。

Input

第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整

数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一

条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N

<=20000,Q<=200000,Gi<=2^60

Output

输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。

Sample Input

4 2

11 5 7 9

1 2

1 3

1 4

2 3

1 4

Sample Output

14

11

题解

很显然,树链剖分之后维护路径上的线性基

然而线段树是\(log^4\)

所以用\(ST\)表来处理(反正没有修改)

时间复杂度\(O(nlog^3)\)

单次询问复杂度也是\(log^3\)

(线性基的合并的复杂度是\(log^2\)的!!!)

总的复杂度\(O((n+Q)log^3)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 22222
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,lg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,Q;
ll V[MAX];
struct xxj
{
ll p[61];int ele;
void clear(){memset(p,0,sizeof(p));ele=0;}
void insert(ll x)
{
if(ele==61)return;
for(int i=60;i>=0;--i)
{
if(~x&(1ll<<i))continue;
if(!p[i]){p[i]=x;++ele;break;}
x^=p[i];
}
}
ll Query(ll x)
{
for(int i=60;i>=0;--i)x=max(x,x^p[i]);
return x;
}
}t[17][MAX];
xxj Merge(xxj a,xxj b)
{
for(int i=0;i<=60&&a.ele!=61;++i)if(b.p[i])a.insert(b.p[i]);
return a;
}
int size[MAX],hson[MAX],top[MAX],fa[MAX],dep[MAX],dfn[MAX],tim;
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;dep[u]=dep[ff]+1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
dfs1(v,u);
size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;
t[0][tim].insert(V[u]);
if(hson[u])dfs2(hson[u],tp);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==fa[u]||v==hson[u])continue;
dfs2(v,v);
}
}
xxj ans;
xxj Get(int l,int r)
{
int ln=lg[r-l+1];
return Merge(t[ln][l],t[ln][r-(1<<ln)+1]);
}
int main()
{
n=read();Q=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs1(1,0);dfs2(1,1);
for(int i=2;i<=n;++i)lg[i]=lg[i>>1]+1;
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
t[j][i]=Merge(t[j-1][i],t[j-1][i+(1<<(j-1))]);
while(Q--)
{
int x=read(),y=read();ans.clear();
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
ans=Merge(Get(dfn[top[x]],dfn[x]),ans);
x=fa[top[x]];
}
if(dep[x]<dep[y])swap(x,y);
ans=Merge(Get(dfn[y],dfn[x]),ans);
printf("%lld\n",ans.Query(0));
}
return 0;
}

【BZOJ4568】幸运数字(线性基,树链剖分,ST表)的更多相关文章

  1. bzoj4568 [Scoi2016]幸运数字 线性基+树链剖分

    A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A ...

  2. 【BZOJ 4568】 4568: [Scoi2016]幸运数字 (线性基+树链剖分+线段树)

    4568: [Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形 ...

  3. BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]

    4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...

  4. BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)

    题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...

  5. 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增

    P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...

  6. 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]

    题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...

  7. P3292 [SCOI2016]幸运数字 线性基

    正解:线性基+倍增 解题报告: 先放下传送门QAQ 然后这题,其实没什么太大的技术含量,,,?就几个知识点套在一起,除了代码长以外没任何意义,主要因为想复习下线性基的题目所以还是写下,,, 随便写下思 ...

  8. BZOJ.4516.[SCOI2016]幸运数字(线性基 点分治)

    题目链接 线性基可以\(O(log^2)\)暴力合并.又是树上路径问题,考虑点分治. 对于每个点i求解 LCA(u,v)==i 时的询问(u,v),只需求出这个点到其它点的线性基后,暴力合并. LCA ...

  9. [SCOI2016]幸运数字 线性基

    题面 题面 题解 题面意思非常明确:求树上一条链的最大异或和. 我们用倍增的思想. 将这条链分成2部分:x ---> lca , lca ---> y 分别求出这2个部分的线性基,然后合并 ...

  10. BZOJ 4568 [Scoi2016]幸运数字 ——线性基 倍增

    [题目分析] 考虑异或的最大值,维护线性基就可以了. 但是有多次的询问,树剖或者倍增都可以. 想了想树剖动辄数百行的代码. 算了,我还是写倍增吧. 注:被位运算和大于号的优先级坑了一次,QaQ [代码 ...

随机推荐

  1. sqoop 数据迁移

    sqoop 数据迁移 1 概述 sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具. 导入数据:MySQL,Oracle导入数据到Hadoop的HDFS.HIVE.H ...

  2. charles录制https请求

    之前一直用windows系统,抓包什么的都是用的fiddler或者wireshark,操作比较简单,扩展性也比较强,现在因为工作原因换了mac,在网上一直没有找到fiddler的mac版本,就只能切换 ...

  3. 探寻ASP.NET MVC鲜为人知的奥秘(2):与Entity Framework配合,让异步贯穿始终

    Why 在应用程序,尤其是互联网应用程序中,性能一直是很多大型网站的困扰,由于Web2.0时代的到来,人们更多的把应用程序从C/S结构迁移到B/S结构,这样会带来客户端轻量,部署.试试方便快捷等优势, ...

  4. github如何删除仓库中文件夹

    github项目中,经常大家更新.添加都非常熟悉,但是如果想要删掉一个文件夹,很多人就不知道怎么操作了. 网上查了一些方法,大部分都是删除仓库重新上传,这样肯定是不行的,首先不说任务量大,而且删除仓库 ...

  5. 人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”

    人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 ...

  6. VR中射线点击按钮的实现

    VR中实现UI的Button点击,主要是需要实现IPointerClickHandler接口,因为在Unity将所有的按钮操作都封装成了相应的接口,需要相应的功能只需要去实现对应的接口就好了.在这里我 ...

  7. CSS 实用实例

    背景颜色 1. 颜色背景 <style type="text/css">body { font-size: 16px;">h1 { font-size: ...

  8. Dubbo背景和简介

    转载出处 Dubbo开始于电商系统,因此在这里先从电商系统的演变讲起. 单一应用框架(ORM) 当网站流量很小时,只需一个应用,将所有功能如下单支付等都部署在一起,以减少部署节点和成本. 缺点:单一的 ...

  9. 苹果没放弃手写笔 这样的iPad你想要吗?

    12 月 31 日,美国专利与商标局(The U.S. Patent and Trademark Office)当地时间周四批准了一项来自苹果的专利申请,该专利主要描述的是一种可以通过陀螺仪.无线通讯 ...

  10. $_SERVER的详细参数整理下

    PHP编程中经常需要用到一些服务器的一些资料,特把$_SERVER的详细参数整理下,方便以后使用. $_SERVER['PHP_SELF'] #当前正在执行 脚本的文件名,与 document roo ...