这题原题。。。

这题题面七绕八绕,有点麻烦,反正最后转化就是一棵树,每个点有一个值,要把所有点选完,要求选择一个点必须是它的父亲和祖先已经全部被选了,贡献是这个点的权值乘上它被选择的排名

如果一个点是它的父亲的所有儿子中权值最小的点,那么只要它的父亲选了,那接下来就肯定是选它。所以在序列中这个点的父亲是和它相邻的,可以直接合并了

然后看两个序列合并是如何合并的

例如长 \(m_1\)​ 的序列 \(a\) 和长 \(m_2\) 的序列 \(b\),和并后会放在整个序列的第 \(i\) 位置之后

如果 \(a\) 在 \(b\) 前面,贡献为\(\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j+m_1)w_{b_j}\)

如果 \(a\) 在 \(b\) 后面,贡献为\(\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j+m_2)w_{a_j}\)

然后我们推一推

\(\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j+m_1)w_{b_j}=\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j)w_{b_j}+m_1perm_b\)

\(\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j+m_2)w_{a_j}=\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j)w_{a_j}+m_2perm_a\)

作差 \(perm_{ab}-perm_{ba}=m_1perm_b-m_2perm_a\)

假如\(m_1perm_b-m_2perm_a>0\) 即 \(\frac{perm_a}{m_1}\lt\frac{perm_b}{m_2}\) ,那么 \(ba\) 比 \(ab\) 更优秀

所以就可贪心,按平均值贪心就好了

上一波pbds,因为它可以把堆和并查集放在一起做

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/priority_queue.hpp>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
typedef std::pair<ld,int> pli;
const int MAXN=500000+10;
int n,e,beg[MAXN],to[MAXN<<1],nex[MAXN<<1],degree[MAXN],size[MAXN],treefa[MAXN],fa[MAXN],w[MAXN],s;
ll res,val[MAXN];
__gnu_pbds::priority_queue< pli,std::greater<pli> > q;
__gnu_pbds::priority_queue< pli,std::greater<pli> >::point_iterator it[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline bool nosolution()
{
for(register int i=1;i<=n;++i)
if(!degree[i])return false;
puts("-1");
return true;
}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void dfs(int x,int f)
{
treefa[x]=f;
for(register int i=beg[x];i;i=nex[i])
if(to[i]!=f)dfs(to[i],x);
}
int main()
{
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
read(n);
s=n+1;
for(register int i=1,x;i<=n;++i)read(x),insert(x?(degree[i]++,x):s,i);
for(register int i=1;i<=n;++i)read(w[i]);
if(nosolution())return 0;
dfs(s,0);
fa[s]=s;val[s]=0;size[s]=1;
for(register int i=1;i<=n;++i)
{
fa[i]=i;val[i]=w[i];size[i]=1;
it[i]=q.push(std::make_pair((ld)val[i],i));
}
while(!q.empty())
{
int x=q.top().second,y=found(treefa[x]);
q.pop();
res+=1ll*val[x]*size[y];
fa[x]=y;size[y]+=size[x];val[y]+=val[x];
if(y==s)continue;
q.modify(it[y],std::make_pair((ld)val[y]/size[y],y));
}
write(res,'\n');
return 0;
}

【比赛】HNOI2018 排列的更多相关文章

  1. 【BZOJ5289】[HNOI2018]排列(贪心)

    [BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\( ...

  2. 5289: [Hnoi2018]排列

    5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最 ...

  3. bzoj 5289: [Hnoi2018]排列

    Description Solution 首先注意到实际上约束关系构成了一棵树 考虑这个排列 \(p\),编号为 \(a[i]\) 的出现了,\(i\) 才可以出现 那么如果连边 \((a[i],i) ...

  4. [HNOI2018]排列

    Description: 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le a_i \le n\),以及 \(n\) 个整数 \(w_1, w_2, \dots, ...

  5. [HNOI2018]排列[堆]

    题意 给定一棵树,每个点有点权,第 \(i\) 个点被删除的代价为 \(w_{p[i]}\times i\) ,问最小代价是多少. 分析 与国王游戏一题类似. 容易发现权值最小的点在其父亲选择后就会立 ...

  6. BZOJ5289: [Hnoi2018]排列

    传送门 第一步转化,令 \(q[p[i]]=i\),那么题目变成: 有一些 \(q[a[i]]<q[i]\) 的限制,\(q\) 必须为排列,求 \(max(\sum_{i=1}^{n}w[i] ...

  7. loj2509 hnoi2018排列

    题意:对于a数组,求它的一个合法排列的最大权值.合法排列:对于任意j,k,如果a[p[j]]=p[k],那么k<j. 权值:sigma(a[p[i]]*i).n<=50W. 标程: #in ...

  8. BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)

    BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\) ...

  9. [BZOJ5289][HNOI2018]排列(拓扑排序+pb_ds)

    首先确定将所有a[i]向i连边之后会形成一张图,图上每条有向边i->j表示i要在j之前选. 图上的每个拓扑序都对应一种方案(如果有环显然无解),经过一系列推导可以发现贪心策略与合并的块的大小和w ...

随机推荐

  1. 简单读取 properties文件

    看了网上很多读取的方法,都太过复杂,直接使用下面的方法就可以简单读取 properties文件了 ide使用idea 测试读取成功 import java.util.ResourceBundle; p ...

  2. 如何在存储过程的IN操作中传递字符串变量

    原始SQL如下: SELECT MONTH(OrderTime) AS datetype, SUM(DeliveryCount) AS decount, Region FROM (SELECT dbo ...

  3. 前端--初识jQuery

    jQuery 一.jQuery介绍 1.jQuery是一个轻量级.兼容多浏览器的js库. 2.jQuery使用户能够更方便地处理HTML Document,Events,实现动画效果,方便的进行Aja ...

  4. 技本功丨利用 Atomic 构建 React 项目工作流,so easy!

    近日刷微博,#2018年结婚率创新低#荣登热门话题NO.1,沪浙最不积极. 生活压力越大,缺爱的人也越来越多...据本萌的不完全观察,程序猿虽然是压力加成的职业,在袋鼠云还是有不少早早脱了单.至于,脱 ...

  5. UVa 10071

    简单运动学公式 v=v0+at x=v0t+1/2*a*t^2=2vt #include<stdio.h> int main() { int v, t; while((scanf(&quo ...

  6. 二分图最大匹配模版 m√(n) 复杂度

    周大爷在比赛中搜到的黑科技二分图模版,复杂度为m√(n): 注意:点的序号要从0开始! 需要把nx,ny都赋值为n(点数) ; *; struct Edge { int v; int next; } ...

  7. We are writing to let you know we have removed your selling privileges

     Hello, We are writing to let you know we have removed your selling privileges, canceled your listin ...

  8. 2017年软件工程第八次作业-每周PSP例行报告

    1.PSP表格 2.进度条 3.博文字数累积折线图 4.代码行数累积折线图 5.PSP饼图

  9. 【线段树维护复杂状态】Ryuji doesn't want to study

    https://nanti.jisuanke.com/t/31460 tree[rt].ans = tree[rt << 1].ans + tree[rt << 1 | 1]. ...

  10. UITableViewCell contentView layoutSubviews 死循环

    发现一个问题,当在UITableViewCell 的 layoutSubviews 中修改 contentView 的frame时会产生死循环.该问题只会出现在iOS8中,iOS7与iOS9均没有问题 ...