【[国家集训队]Crash的数字表格 / JZPTAB】
这道题我们要求的是
\]
总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\times lcm(i,j)=i\times j\)
所以很容易的可以转化成这个柿子
\]
现在开始套路了
先设两个函数
\]
\]
\]
显然则有
\]
反演得
\]
于是答案就是
\]
\]
后面的一大坨东西真是太烦人了,搞到前面来
\]
于是我们可以用\(\Theta(n \ln n)\)来求出\(\sum_{i|d}\frac{\mu(\frac{d}{i})\times d^2}{i}\)之后前缀和
于是有了一个\(70\)分的代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 10000005
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
const LL mod=20101009;
int n,m;
int f[maxn],p[maxn>>2];
LL pre[maxn];
int main()
{
scanf("%d%d",&n,&m);
if(n>m) std::swap(n,m);
f[1]=pre[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,pre[i]=(1-i+mod);
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0)
{
pre[i*p[j]]=pre[i];
break;
}
pre[p[j]*i]=pre[p[j]]*pre[i]%mod;
}
}
for(re int i=1;i<=n;i++) pre[i]=(i*pre[i]%mod+pre[i-1])%mod;
LL ans=0;
for(re LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
LL N=n/l,M=m/l;
ans=(ans+((N+1)*N/2%mod)*((M+1)*M/2%mod)%mod*(pre[r]-pre[l-1]+mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
显然不行
我们设\(T=\frac{d}{i}\)
那么
\]
定义\(h(x)=\sum_{T|x}\mu(T)\times T\)
会发现\(h\)是一个积性函数,可以考虑如何线筛
首先\(x\)是质数\(h(x)=1-x\)
互质的话可以直接乘起来
如果不互质的话需要好好考虑一下了
仔细思考一下这个\(h\)的含义,会发现有一些约数\(T\)是没有用的,就是那些\(\mu(T)=0\)的约数
而线筛的时候一旦\(i\%p[j]==0\),说明\(p[j]\)在\(i\)中出现过,于是\(p[j]\)并不能组成一些新的有用约数,函数值和\(h(i)\)相比其实没有什么变化,所以就有
\]
于是现在的答案变成了
\]
于是直接求\(d\times h(d)\)的前缀和就好了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 10000005
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
const LL mod=20101009;
int n,m;
int f[maxn],p[maxn>>2];
LL pre[maxn];
int main()
{
scanf("%d%d",&n,&m);
if(n>m) std::swap(n,m);
f[1]=pre[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,pre[i]=(1-i+mod);
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0)
{
pre[i*p[j]]=pre[i];
break;
}
pre[p[j]*i]=pre[p[j]]*pre[i];
}
}
for(re int i=1;i<=n;i++) pre[i]=(i*pre[i]%mod+pre[i-1])%mod;
LL ans=0;
for(re LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
LL N=n/l,M=m/l;
ans=(ans+((N+1)*N/2%mod)*((M+1)*M/2%mod)%mod*(pre[r]-pre[l-1]+mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
【[国家集训队]Crash的数字表格 / JZPTAB】的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
随机推荐
- 基于ASP.NET Core 创建 Web API
使用 Visual Studio 创建项目. 文件->新建->项目,选择创建 ASP.NET Core Web 应用程序. 基于 ASP.NET Core 2.0 ,选择API,身份验证选 ...
- Solr环境配置
1.准备 第一步下载JDK1.8.0_131Tomcat9.0.7 注意版本的兼容性 第二歩下载solr,目前使用的是solr-7.3.0 2.安装 1. 将 solr 压缩包解压,并将solr- ...
- JS实现二叉树的创建和遍历
1.先说二叉树的遍历,遍历方式: 前序遍历:先遍历根结点,然后左子树,再右子树 中序遍历:先遍历左子树,然后根结点,再右子树 后续遍历:先遍历左子树,然后右子树,再根结点 上代码:主要还是利用递归 ...
- iOS开发之工具篇-20个可以帮你简化移动app开发流程的工具
如果想进入移动app开发这个领域,你总能从别的开发者或者网上或者书上找到各种各样的方法和工具,对于新手来说,还没有摸清门路就已经陷入迷茫了.这里推荐20个可以帮你简化app开发流程的工具.很多开发者都 ...
- 撩课-Web架构师养成系列(第二篇)-async
前言 Web架构师养成系列共15篇,每周更新一篇,主要分享.探讨目前大前端领域(前端.后端.移动端)企业中正在用的各种成熟的.新的技术.部分文章也会分析一些框架的底层实现,让我们做到知其然知其所以然. ...
- 集合框架以及Map(一)
集合又称容器,编程思想中对其的定义为持有对象 我们在使用集合或者数组时得到最多的异常就是数组下表越界异常 Java.lang.ArrayIndexOutOfBoundsException这篇文章我们不 ...
- spring mybatis 关于 basepackage 和 mapperLocations 的通配符匹配实例
SqlSessionFactoryBean mapperLocations 注意下面几点 classpath* mapperLocation 起始路径不能有 * ,如 dm* 就不行 ** list ...
- jquery获取哪一个下拉框被选中
var val = $("select[name='type_irb'] option:selected").val();
- tensorboard实现tensorflow可视化
1.工程目录 2.data.input_data.py的导入 在tensorflow更新之后可以进行直接的input_data的导入 # from tensorflow.examples.tutori ...
- vs code上配置Scala
转自:https://www.cnblogs.com/steven-yang/p/5852988.html 百度的结果表达太奇怪,简单记一笔. 1.下载一个scala的压缩包,https://www. ...