【BZOJ4698】[SDOI2008]Sandy的卡片

题面

flag倒了。

bzoj

洛谷

题解

首先题目的区间加很丑对吧,

将每个串差分一下,就可以转化为

求:

给定\(N\)个串,求他们的最长公共子串。

怎么办呢,按照后缀数组常用套路

我们用不同的未曾用过的字符将这些串连接起来

我们将\(lcp\)大于\(mid\)的串分组

如果一组内串的个数大于等于\(N\)个,就证明可以\(return\;1\)

否则若没有一组大于等于\(N\)返回\(0\)

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 2e6 + 5;
int N, T, a[MAX_N], b[MAX_N], vis[MAX_N];
int sa[MAX_N], rnk[MAX_N], lcp[MAX_N];
void GetSA() {
#define cmp(i, j, k) (y[i] == y[j] && y[i + k] == y[j + k])
static int x[MAX_N], y[MAX_N], bln[MAX_N];
int M = 1e6;
for (int i = 1; i <= N; i++) bln[x[i] = a[i]]++;
for (int i = 1; i <= M; i++) bln[i] += bln[i - 1];
for (int i = N; i >= 1; i--) sa[bln[x[i]]--] = i;
for (int k = 1; k <= N; k <<= 1) {
int p = 0;
for (int i = 0; i <= M; i++) y[i] = 0;
for (int i = N - k + 1; i <= N; i++) y[++p] = i;
for (int i = 1; i <= N; i++) if (sa[i] > k) y[++p] = sa[i] - k;
for (int i = 0; i <= M; i++) bln[i] = 0;
for (int i = 1; i <= N; i++) bln[x[y[i]]]++;
for (int i = 1; i <= M; i++) bln[i] += bln[i - 1];
for (int i = N; i >= 1; i--) sa[bln[x[y[i]]]--] = y[i];
swap(x, y); x[sa[1]] = p = 1;
for (int i = 2; i <= N; i++) x[sa[i]] = cmp(sa[i], sa[i - 1], k) ? p : ++p;
if (p >= N) break;
M = p;
}
}
void GetLcp() {
for (int i = 1; i <= N; i++) rnk[sa[i]] = i;
for (int i = 1, j = 0; i <= N; i++) {
if (j) --j;
while (a[i + j] == a[sa[rnk[i] - 1] + j]) ++j;
lcp[rnk[i]] = j;
}
}
int col[MAX_N], tot;
bool check(int v) {
++tot; int cnt = 0;
for (int i = 1; i <= N; i++) {
if (lcp[i] < v) ++tot, cnt = 0;
if (col[vis[sa[i]]] != tot) col[vis[sa[i]]] = tot, ++cnt;
if (cnt == T) return 1;
}
return 0;
}
const int dlt = 5e4;
int main () {
T = gi();
for (int i = 1; i <= T; i++) {
int m = gi();
for (int j = 1; j <= m; j++) b[j] = gi();
for (int j = 1; j <= m; j++) b[j] = b[j + 1] - b[j] + dlt;
for (int j = 1; j < m; j++) a[++N] = b[j], vis[N] = i;
a[++N] = i + 5e5;
}
GetSA(); GetLcp();
int l = 0, r = N, ans = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (check(mid)) l = mid + 1, ans = mid;
else r = mid - 1;
}
printf("%d\n", ans + 1);
return 0;
}

【BZOJ4698】[SDOI2008]Sandy的卡片的更多相关文章

  1. [bzoj4698][Sdoi2008]Sandy的卡片_后缀数组_二分/单调队列_双指针

    Sandy的卡片 bzoj-4698 Sdoi-2008 题目大意:题目链接. 注释:略. 想法: 这个题跟一个Usaco的题特别像.我们把这些串差分 现在我们要求的就是公共子串且出现次数不少于$k$ ...

  2. BZOJ4698: Sdoi2008 Sandy的卡片

    差分,枚举一个串的所有后缀,暴力在所有其他串中kmp,复杂度$O(nm^2)$. #include<cstdio> const int N=1005; const int M=105; i ...

  3. BZOJ4698: Sdoi2008 Sandy的卡片(后缀数组 二分)

    题意 题目链接 Sol 不要问我为什么发两篇blog,就是为了骗访问量 后缀数组的也比较好想,先把所有位置差分,然后在height数组中二分就行了 数据好水啊 // luogu-judger-enab ...

  4. BZOJ4698: Sdoi2008 Sandy的卡片(二分 hash)

    题意 题目链接 Sol 用什么后缀数组啊 直接差分之后 二分+hash找最长公共子串就赢了啊... 时间复杂度:\(O(nlogn)\)(不过我写的是两个log..反正也能过) // luogu-ju ...

  5. [BZOJ4698][SDOI2008]Sandy的卡片(后缀自动机)

    差分之后就是求多串LCS. 对其中一个串建SAM,然后把其它串放在上面跑. 对SAM上的每个状态都用f[x]记录这个状态与当前串的最长匹配长度,res[x]是对每次的f[x]取最小值.答案就是res[ ...

  6. 【BZOJ4698】Sdoi2008 Sandy的卡片 后缀数组+RMQ

    [BZOJ4698]Sdoi2008 Sandy的卡片 Description Sandy和Sue的热衷于收集干脆面中的卡片.然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是为了积攒卡 ...

  7. bzoj4698 / P2463 [SDOI2008]Sandy的卡片

    P2463 [SDOI2008]Sandy的卡片 直接二分长度暴力匹配....... 跑的还挺快 (正解是后缀数组的样子) #include<iostream> #include<c ...

  8. 【BZOJ-4698】Sandy的卡片 后缀数组

    4698: Sdoi2008 Sandy的卡片 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 140  Solved: 55[Submit][Stat ...

  9. BZOJ 4698: Sdoi2008 Sandy的卡片

    4698: Sdoi2008 Sandy的卡片 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 106  Solved: 40[Submit][Stat ...

随机推荐

  1. js 调用 oc 的解释

    JavaScriptCore NSInvocation js解释器在解释函数调用时,会在执行环境进行函数搜索,主调者类型判定: 如果是js调用,直接解释执行: 如果是oc调用,则将调用打包成NSInv ...

  2. TP框架---Model模型层---做模型对象

    TP框架----Model模型层---------------做模型对象 Model模型层是用来做什么的呢???? 主要是用来做操作数据库访问的. 也就说明TP框架自带了一种访问数据库的方式,使用的是 ...

  3. 【webpack】理解配置文件

    学习链接: http://blog.csdn.net/hongchh/article/details/55113751 https://segmentfault.com/a/1190000009356 ...

  4. 20155328 2016-2017-2 《Java程序设计》第九周学习总结

    20155328 2016-2017-2 <Java程序设计>第九周学习总结 教材学习内容总结 16.1 JDBC入门 JDBC是Java联机数据库的标准规范,定义一组标准类与接口,应用程 ...

  5. WEB安全 php+mysql5注入防御(一)

    注入利用函数: concat()函数将多个字符串连接成一个字符串 database() 当前数据库,用途:获取数据 version() 数据库版本,用途:利用版本特性,如5.0版本下的informat ...

  6. robotframwork的WEB功能测试(一)—切换window窗口

    selenium2library提供的切换到新窗口的关键字,只有select window,而且也只能根据title.name.url去定位.如下图所示,明显在实际使用中是不够的. 所以这里总结了一下 ...

  7. Tomcat中日志组件

    Tomcat日志组件 AccessLog接口 public interface AccessLog { public void log(Request request, Response respon ...

  8. lwip 2.0.3 DNS 域名解析 使用

    1.  在  lwipopts.h 中 #define LWIP_DNS 1 /* 使能 DNS 服务器的功能 ,2018年1月8日21:16:20,suozhang */ #define LWIP_ ...

  9. lwip TCP client 客户端 & FreeRTOS

    static void tcpecho_thread(void *arg) { ip_addr_t serverIpAddr; struct netbuf *buf; void *data; u16_ ...

  10. stateless 无状态组件

    使用: