题目描述

给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值。求最大总价值。

$n\le 10^5$ 。

输入

第 1 行:一个整数,表示 N。
第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si。

输出

仅一个整数,表示 Flute 最多能得到的柠檬数。

样例输入

5
2
2
5
2
3

样例输出

21


题解

斜率优化

设 $f[i]$ 表示前 $i$ 个数分成若干段的最大总价值。

显然对于分成的每一段,左端点的数、右端点的数、选择的数一定是相同的。因为如果不相同则可以从这个段里删去这个数,答案会更优。

于是就有转移:$f_i=f_{j-1}+a·(c_i-c_j+1)^2\ ,\ j\le i\ ,\ a_j=a_i$ ,其中 $a$ 表示原序列,$c$ 表示这个位置时这个数第几次出现(即出现次数的前缀和)。

显然这个式子可以斜率优化,整理得:$f_{j-1}+a·(c_j-1)^2=ac_i·2(c_j-1)+f_i-ac_i^2$ ,其中 $y$ 是 $f_{j-1}+a·(c_j-1)^2$ ,$k$ 是 $ac_i$  ,$x$ 是 $2(c_j-1)$ ,$b$ 是 $f_i-ac_i^2$ 。

这里 $k$ 单调递增,$x$ 单调递增,然而要求的是 $b$ 的最大值,因此只能使用单调栈维护上凸壳。对每种数开一个vector即可。询问时在vector上二分。

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <vector>
#define N 100010
#define y(i) (f[i - 1] + a[i] * squ(c[i] - 1))
#define x(i) 2 * (c[i] - 1)
using namespace std;
typedef long long ll;
vector<int> v[10010];
ll cnt[10010] , c[N] , f[N];
int a[N];
inline ll squ(ll x)
{
return x * x;
}
int main()
{
int n , i , l , r , mid , ret , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &a[i]) , c[i] = ++cnt[a[i]];
while((t = v[a[i]].size() - 1) > 0 && (x(i) - x(v[a[i]][t])) * (y(v[a[i]][t - 1]) - y(v[a[i]][t])) - (y(i) - y(v[a[i]][t])) * (x(v[a[i]][t - 1]) - x(v[a[i]][t])) > 0) v[a[i]].pop_back();
v[a[i]].push_back(i);
l = 1 , r = v[a[i]].size() - 1 , ret = 0;
while(l <= r)
{
mid = (l + r) >> 1;
if(f[v[a[i]][mid] - 1] + a[i] * squ(c[i] - c[v[a[i]][mid]] + 1) > f[v[a[i]][mid - 1] - 1] + a[i] * squ(c[i] - c[v[a[i]][mid - 1]] + 1)) ret = mid , l = mid + 1;
else r = mid - 1;
}
f[i] = f[v[a[i]][ret] - 1] + a[i] * squ(c[i] - c[v[a[i]][ret]] + 1);
}
printf("%lld\n" , f[n]);
return 0;
}

【bzoj4709】[Jsoi2011]柠檬 斜率优化的更多相关文章

  1. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  2. [BZOJ4709][JSOI2011]柠檬(斜率优化DP)

    显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...

  3. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  4. bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...

  5. [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp

    题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...

  6. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  7. BZOJ4709 JSOI2011柠檬(动态规划)

    首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...

  8. BZOJ4709: [Jsoi2011]柠檬(决策单调性)

    题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...

  9. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

随机推荐

  1. 20155322 2016-2017-2 《Java程序设计》第2周学习总结

    20155322 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 本周按照教学安排学习教材的第三章,下面简单的概括一下我的学习总结: 第三章的主要内容是有关于 ...

  2. .net core 无法获取本地变量或参数的值,因为它在此指令指针中不可用,可能是因为它已经被优化掉了

    使用vs 发布.net CORE 项目,调试遇到了“无法获取本地变量或参数的值,因为它在此指令指针中不可用,可能是因为它已经被优化掉了”这个问题,弄了半天才发现是发布的时候没有设置为debug,做个总 ...

  3. underscore.js 分析 第四天

    查看underscore包含多少属性和方法 通过阅读JavaScript 获取对象的键的数组 var a = _; var arr = Object.keys(a); console.log(arr) ...

  4. 二、Web框架实现

    一.简单web(socket) 在前一篇WEB框架概述一文中已经详细了解了:从浏览器键入一个URL到返回HTML内容的整个过程.说到底,本质上其实就是一个socket服务端,用户的浏览器其实就是一个s ...

  5. Qt-QML-Canvas-雷达扫描仪表简单

    使用QML实现的雷达仪表的实现,主要实现了余晖扫描的实现,其他的还是比较简单的,后面可能会加入目标标识,目前的功能仅仅是一个假的扫描雷达 来看代码 /* 作者:张建伟 时间:2018年4月27日 简述 ...

  6. 04-容器 What, Why, How

    What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...

  7. JavaScript事件冒泡和捕获

    事件捕获指的是从document到触发事件的那个节点,即自上而下的去触发事件. 事件冒泡是自下而上的去触发事件. 绑定事件方法的第三个参数,就是控制事件触发顺序是否为事件捕获.true,事件捕获:fa ...

  8. JAVA学习笔记--迭代器

    迭代器(Iterator)是一种设计模式.它是一个对象,它的工作是遍历并选择序列中的对象,而客户端程序员不必知道或关心该序列底层的结构.创建迭代器的代价小,因而迭代器通常被称为轻量级对象. 一.Ite ...

  9. #Ubuntu 18.04 安装tensorflow-gpu 1.9

    参考 https://tensorflow.google.cn/install/install_linux http://nvidia.com/cuda http://developer.nvidia ...

  10. 兰亭集势股价疯涨背后:物流成外贸B2C发展掣肘

    21世纪经济报道 汤浔芳 北京报道 核心提示:“兰亭集势涨势喜人,这样的增长是这两三年中概股没有出现过的.”一位负责美股投资的基金合伙人告诉记者,此前,中概股比较低迷,持续大幅度上涨,难得一见. 在唯 ...