洛谷 P3177 树上染色
题目要求将k个点染成黑色,求黑点两两距离及白点两两距离,使他们之和最大。
我们可以将距离转化为路径,然后再将路径路径拆分成边,就可以记录每条边被经过的次数,直接计算即可。
很简单对吧?那么问题来了,距离转化为路径好理解,路径拆为边也好说,可是每条边被经过的次数怎么计算呢?
我们可以这样想,我们任意取两个同色的点,对于每一条边,若不在这两个点的路径上,我们自然不考虑,若是在两个点的路径上,那么这条边的计数加一。我们可以转换一下,若是两个点在边的一侧,则不影响计数,若在边的两侧,则边的计数加一。那么我们推广一下,便可以得出,一条边的两侧每有一对同色点,这条边就要被经过一次。也就是说,一条边被经过的次数等于边的两侧同色点个数的乘积。那么我们便可以求出每条边被经过的次数
\(tot=k*(m-k)+(sz[v]-k)*(n-m-sz[v]+k)\)
\(m\)表示题目要求选的黑点数,\(sz[v]\)表示当前子节点的子树大小,\(k\)表示当前子节点的子树上已选择的黑点数
得出了这个结论,我们就可以轻松地DP了。
下面放代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
#define maxn 2005
using namespace std;
inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}
struct ahaha{
int w,to,next;
}e[maxn<<1];int tot,head[maxn];
inline void add(int u,int v,int w){
e[tot].w=w,e[tot].to=v,e[tot].next=head[u];head[u]=tot++;
}
int n,m,sz[maxn];
ll f[maxn][maxn];
void dfs(int u,int fa){
sz[u]=1;f[u][0]=f[u][1]=0;
for(int i=head[u];~i;i=e[i].next){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);sz[u]+=sz[v];
for(int j=min(m,sz[u]);j>=0;--j){ //此处倒序枚举是为了避免重复选取
if(f[u][j]!=-1) //在DP前应先加上当前子节点的子树纯白色的情况,这是下面也倒序枚举的前提
f[u][j]+=f[v][0]+(ll)sz[v]*(n-m-sz[v])*e[i].w;
for(int k=min(j,sz[v]);k;--k){
if(f[u][j-k]==-1)continue;
ll val=(ll)(k*(m-k)+(sz[v]-k)*(n-m-sz[v]+k))*e[i].w; //当前情况下连接子节点的边的贡献
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]+val);
}
}
}
}
int main(){memset(head,-1,sizeof head);
n=read();m=read();
if(n-m<m)m=n-m;
for(int i=1;i<n;++i){
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}memset(f,-1,sizeof f);
dfs(1,-1);
printf("%lld",f[1][m]);
return 0;
}
以上就是本道题的题解,不知道你是否看懂了呢。如有不明白的地方,欢迎提问。
洛谷 P3177 树上染色的更多相关文章
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷P3177 树上染色
题目 一道非常好的树形DP. 状态:\(dp[u][n]\)为u的子树选n个黑点所能得到的收益最大值. 则最终的结果就是\(dp[root][k],\)\(root\)可以为任何值,为了方便,使\(r ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷P3177||bzoj4033 [HAOI2015]树上染色
洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...
- 2021.07.17 P3177 树上染色(树形DP)
2021.07.17 P3177 树上染色(树形DP) [P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.dp思想是需要什么,维护 ...
- [洛谷U40581]树上统计treecnt
[洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边 ...
- BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
随机推荐
- struts常用知识
一,struts2是什么? struts2是一个控制框架,相当于连接底层和显示层,控制页面和数据展示 二,为什么用struts2? jsp+javabean模式:jsp里的小脚本java代码太多,页面 ...
- JDK核心源码
一.核心包有哪些? Jdk的包中,除开了lang包下面的类,用得最多的应该要属于util包下面的类了, 本篇文章主要针对Jdk的util包下面的类(util目录下面的类,暂时不包括util 包下面的子 ...
- Yii2.0 Gridview为某列增加属性
我们知道GridView组件非常方便,会自动生成数据表格.table tr td神马的全自动生成的.但是如果想定制化稍微有点难度. 比如想在某列td上应用样式. 老写法是这样的 <?= Grid ...
- js文件上传库
收集了2个与具体UI库和框架无任何耦合的JS文件上传库:支持断点续传.支持npm安装. resumable.js fileapi
- 2019年猪年颁奖典礼、公司年会、跨年晚会、科技会议、年终答谢会之幕布背景展板PSD模板-第三部分
16套--2019年猪年颁奖典礼.公司年会.跨年晚会.科技会议.年终答谢会之幕布.背景和展板PSD模板,免费颁奖典礼PSD展板背景幕布,下载地址:百度网盘,https://pan.baidu.com/ ...
- jmeter逻辑控制器
刚开始学习,只写几种了解的逻辑控制器 1.简单控制器 只用来组合采样器和其他逻辑控制器,不影响jmeter的运行 2.循环控制器 用来循环执行采样器和其他逻辑控制器,例如一个用户发送特定请求多次,即可 ...
- elasticserach + kibana环境搭建
一.java环境安装: 1.安装jdk,点击下一步即可. 2.环境变量配置 1) 找到jdk安装目录:C:\Program Files\Java\jdk1.8.0_161 2) 配置环境变量 ①找到环 ...
- JQuery 异步提交数据
类别添加 名称:   正在发送数据请求… <% dim strValue blnLogin = false; strValue = request.Form("t ...
- JUnit initializationError错误
一.JUnit Test 测试 initializationError错误 MyMaincom.test.sunc.MyMaininitializationError(com.test.sunc.My ...
- KETTLE并行
1.转换的并行 转换的并行是改变复制的数量 上面的转换相当于下面的: 实际是把一个任务拆成三部分执行,相当于在一个数据库连接中做了三次查询,数据库连接的开销没有增加,但是有三个进程一起执行. 2.jo ...