codeforces 1023 D. Array Restoration 并查集
1 second
256 megabytes
standard input
standard output
Initially there was an array $$$a$$$ consisting of $$$n$$$ integers. Positions in it are numbered from $$$1$$$ to $$$n$$$.
Exactly $$$q$$$ queries were performed on the array. During the $$$i$$$-th query some segment $$$(l_i, r_i)$$$ $$$(1 \le l_i \le r_i \le n)$$$ was selected and values of elements on positions from $$$l_i$$$ to $$$r_i$$$ inclusive got changed to $$$i$$$. The order of the queries couldn't be changed and all $$$q$$$ queries were applied. It is also known that every position from $$$1$$$ to $$$n$$$ got covered by at least one segment.
We could have offered you the problem about checking if some given array (consisting of $$$n$$$ integers with values from $$$1$$$ to $$$q$$$) can be obtained by the aforementioned queries. However, we decided that it will come too easy for you.
So the enhancement we introduced to it is the following. Some set of positions (possibly empty) in this array is selected and values of elements on these positions are set to $$$0$$$.
Your task is to check if this array can be obtained by the aforementioned queries. Also if it can be obtained then restore this array.
If there are multiple possible arrays then print any of them.
The first line contains two integers $$$n$$$ and $$$q$$$ ($$$1 \le n, q \le 2 \cdot 10^5$$$) — the number of elements of the array and the number of queries perfomed on it.
The second line contains $$$n$$$ integer numbers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le q$$$) — the resulting array. If element at some position $$$j$$$ is equal to $$$0$$$ then the value of element at this position can be any integer from $$$1$$$ to $$$q$$$.
Print "YES" if the array $$$a$$$ can be obtained by performing $$$q$$$ queries. Segments $$$(l_i, r_i)$$$ $$$(1 \le l_i \le r_i \le n)$$$ are chosen separately for each query. Every position from $$$1$$$ to $$$n$$$ should be covered by at least one segment.
Otherwise print "NO".
If some array can be obtained then print $$$n$$$ integers on the second line — the $$$i$$$-th number should be equal to the $$$i$$$-th element of the resulting array and should have value from $$$1$$$ to $$$q$$$. This array should be obtainable by performing exactly $$$q$$$ queries.
If there are multiple possible arrays then print any of them.
4 3
1 0 2 3
YES
1 2 2 3
3 10
10 10 10
YES
10 10 10
5 6
6 5 6 2 2
NO
3 5
0 0 0
YES
5 4 2
In the first example you can also replace $$$0$$$ with $$$1$$$ but not with $$$3$$$.
In the second example it doesn't really matter what segments to choose until query $$$10$$$ when the segment is $$$(1, 3)$$$.
The third example showcases the fact that the order of queries can't be changed, you can't firstly set $$$(1, 3)$$$ to $$$6$$$ and after that change $$$(2, 2)$$$ to $$$5$$$. The segment of $$$5$$$ should be applied before segment of $$$6$$$.
There is a lot of correct resulting arrays for the fourth example.
最后一次操作一定不会被覆盖,第q次操作后只能有一个[q],只有两种合法的情况:
只有一个[q];有若干个[q],且[q]之间必须全部是[0]。
对第q-1次操作的检查也是同理,因为q-1只可能被[q]覆盖,两个[q-1]之间只能出现[0]或[q],只有下面两种合法的情况:
只有一个[q-1];有若干个[q-1],且必须是[q-1][0][q-1]或[q-1][q][q-1]的形式。
为了方便检查两个[q-1]之间是否为[q]或[0],在上一步处理[q]的时候,可以把[q]之间的[0]全部变为[q],最后让q变成连通的一整块,这样就只用检查是否为[q]了。
对第q-2次操作的检查就是:
只有一个[q-2];有若干个[q-2],且两两之间必须全部是[q-2][0][q-2], [q-2][q-1][q-2], [q-2][q][q-2], [q-2][q][q-1][q-2],[q-2][q-1][q][q-1][q-2],...。
注意到合法的情况将越来越多,但其实只需要检查[q-2][x]...[y][q-2]中,与[q-2]直接相邻的两个[x][y]就可以了。如果[x]...[y]中没有[0],那么[x]...[y]全为[q]或[q-1]的充分必要条件,就是[x],[y]都为[q]或[q-1],如果存在反例,那么q-1的检查一定不能通过。
为了方便检查,我们不希望在[x]...[y]有[0]的存在,可以在检查[q-1]的之前,把与[q-1]相邻的[0]全部设为[q-1],在检查[q-2]之前,把[q-2]相邻的[0]全部设为[q-2]。
依次类推,对第i次操作的检查,首先把所有[i]相邻的[0]设为[i],再检查[i][x]..[y][i]的内部,[x]...[y]则一定都是不小于[x], [y]的数,那么合法的充分必要条件就是[x]和[y]都比i大。
这样处理到最后,发现所有的[0]都被填充了,所以直接按[i]整段输出就可以了。
#include<stdio.h> #define N_max 200005
int n,q;
int ipt[N_max],now[N_max];
int lg[N_max],rg[N_max];//并查集的范围
int fst[N_max],nxt[N_max];//并查集的链表 //#define debug there_is_no_bug_at_all_if_you_cannot_see_these_words_:( int main(){
scanf("%d %d",&n,&q);
int last,fr;
scanf("%d",ipt+);
last=ipt[];fr=;lg[]=;
for(int i=;i<=n;++i){
scanf("%d",ipt+i);
if(ipt[i]!=last){//出现新的值
/*将i-1代表的并查集插入链表*/
nxt[i-]=fst[last];
fst[last]=i-;
/*在头部记录并查集覆盖的范围,以及值*/
lg[i-]=fr;rg[i-]=i-;now[i-]=last;
//在并查集的尾部也要记录整个并查集范围
rg[fr]=i-;
/*准备下一个并查集*/
fr=i;last=ipt[i];lg[fr]=fr;
}
}
//把最后一段并查集也添加进来
nxt[n]=fst[last];
fst[last]=n;
lg[n]=fr;rg[n]=n;now[n]=last;
rg[fr]=n; //值为q的并查集至少有一个,如果没有就把一个0设为q
if(fst[q]==){
if(fst[]==){//没有0则是不合法的
printf("NO");return ;
}
now[fst[]]=q;
fst[q]=fst[];
fst[]=nxt[fst[]];nxt[fst[q]]=;
}
int ln;
for(int t=q;t>=;--t){//扫描所有值为t的并查集 if(now[rg[fst[t]+]]==)/*因为是从右向左遍历的,如果第一个t右边的并查集是0,则将他设为t*/
now[rg[fst[t]+]]=t;
for(ln=fst[t];ln;ln=nxt[ln])if(now[lg[ln]-]==)/*所有t左边的并查集如果是0则设为t*/
now[lg[ln]-]=t;
for(ln=nxt[fst[t]];ln;ln=nxt[ln])/*再次遍历,检查并查集之间是否出现了更小的值*/
if(now[rg[ln+]]<t){printf("NO");return ;}
}
printf("YES\n");
for(int i=;i<=n;){//输出的时候按并查集输出
for(int t=i;t<=rg[i];++t)
printf("%d ",now[rg[i]]);
i=rg[i]+;
}
}
codeforces 1023 D. Array Restoration 并查集的更多相关文章
- CodeForces - 722C Destroying Array (并查集/集合的插入和删除)
原题链接:https://vjudge.net/problem/511814/origin Description: You are given an array consisting of n no ...
- Codeforces 699D Fix a Tree 并查集
原题:http://codeforces.com/contest/699/problem/D 题目中所描述的从属关系,可以看作是一个一个块,可以用并查集来维护这个森林.这些从属关系中会有两种环,第一种 ...
- Codeforces 731C:Socks(并查集)
http://codeforces.com/problemset/problem/731/C 题意:有n只袜子,m天,k个颜色,每个袜子有一个颜色,再给出m天,每天有两只袜子,每只袜子可能不同颜色,问 ...
- codeforces 400D Dima and Bacteria 并查集+floyd
题目链接:http://codeforces.com/problemset/problem/400/D 题目大意: 给定n个集合,m步操作,k个种类的细菌, 第二行给出k个数表示连续的xi个数属于i集 ...
- Codeforces 1027F Session in BSU - 并查集
题目传送门 传送门I 传送门II 传送门III 题目大意 有$n$门科目有考试,第$i$门科目有两场考试,时间分别在$a_i, b_i\ \ (a_i < b_i)$,要求每门科目至少参加 ...
- CodeForces - 455C Civilization (dfs+并查集)
http://codeforces.com/problemset/problem/455/C 题意 n个结点的森林,初始有m条边,现在有两种操作,1.查询x所在联通块的最长路径并输出:2.将结点x和y ...
- Codeforces 859E Desk Disorder:并查集【两个属性二选一】
题目链接:http://codeforces.com/problemset/problem/859/E 题意: 有n个人,2n个座位. 给出这n个人初始的座位,和他们想坐的座位. 每个人要么坐在原来的 ...
- Codeforces 651E Table Compression【并查集】
题目链接: http://codeforces.com/problemset/problem/650/C 题意: 给定n*m的矩阵,要求用最小的数表示每个元素,其中各行各列的大小关系保持不变. 分析: ...
- codeforces 456 E. Civilization(并查集+数的直径)
题目链接:http://codeforces.com/contest/456/problem/E 题意:给出N个点,M条边,组成无环图(树),给出Q个操作,操作有两种: 1 x,输出x所在的联通块的最 ...
随机推荐
- 考研编程练习----Kruskal
#include <stdio.h> #include <stdlib.h> #define MAX 100 /* 定义边(x,y),权为w */ typedef st ...
- [BZOJ1857][SCOI2010]传送带-[三分]
Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...
- DIRECT3D状态详解
Microsoft® Direct3D®设备是一个状态机.应用程序设置光照.渲染和变换模块的状态,然后在渲染时传递数据给它们. 本节描述图形流水线用到的所有不同类型的状态. 渲染状态 取样器状态 纹理 ...
- Block 在 ARC 下的拷贝
前言 现在有一种说法,是开启arc选项时,已经没有栈上的block了,所以所有的block都不需要copy来拷贝到堆上了.那么这个说法正确与否呢? 结论是这个说法必须是错误的,首先的一点就是arc只是 ...
- 非Contorller类使用@Service中的方法
组件扫描这种的是指bean,跟service没关系 service只能在Controller类中使用,如果别的类想使用,必须使用下面这种方法 内容来源:https://blog.csdn.net/u0 ...
- Tp框架之命名空间
命名空间,相当于虚拟目录 实现自动加载类的机制 初始命名空间:Library文件夹 初始命名空间下面有很多根命名空间: 1.Library里面的文件夹 2.APP的模块文件夹 在tp框架中,只有这两个 ...
- phpcms 的模板更换
刚安装完成后的phpcms ,自带的默认模板样式一般,可以自己换模板 首先打开phpcms文件夹,按照下图路径打开 default是存模板的文件夹 在里面新建一个文件夹 在default中主要用到的是 ...
- 三边定位 c#
MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发.数据可视化.数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分. 项目中用到三 ...
- 180725-InfluxDB-v1.6.0安装和简单使用小结
InfluxDB安装和简单使用小结 InfluxDB是一个时序性数据库,因为工作需求,安装后使用测试下是否支持大数据下的业务场景 说明: 安装最新版本 v1.6.0 集群版本要收费,单机版本免费 内部 ...
- linux 下 python 安装 Django
安装 setuptools 使用easy_install命令 easy_install django