蓝桥杯练习场上有两个此类题目:
算法训练 幂方分解  
时间限制:1.0s   内存限制:256.0MB
      
锦囊1
  递归。
锦囊2
  使用一个函数,递归的进行分解,每次分解的时候要将数字先转换成二进制。
 
问题描述
  任何一个正整数都可以用2的幂次方表示。例如:
  137=27+23+20 
  同时约定方次用括号来表示,即ab 可表示为a(b)。
  由此可知,137可表示为:
  2(7)+2(3)+2(0)
  进一步:7= 22+2+20 (21用2表示)
  3=2+20 
  所以最后137可表示为:
  2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:
  1315=210 +28 +25 +2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
  输入包含一个正整数N(N<=20000),为要求分解的整数。
输出格式
  程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)
 
算法训练 2的次幂表示  
时间限制:1.0s   内存限制:512.0MB
    
问题描述
  任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
  将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
  现在约定幂次用括号来表示,即a^b表示为a(b)
  此时,137可表示为:2(7)+2(3)+2(0)
  进一步:7=2^2+2+2^0 (2^1用2表示)
  3=2+2^0 
  所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:1315=2^10+2^8+2^5+2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
  正整数(1<=n<=20000)
输出格式
  符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
  用递归实现会比较简单,可以一边递归一边输出
 
 #include<stdio.h>
/*定义函数*/
void cimi(int n){
int num=;
int i=,j,k;
int a[];//数组定义为局部变量
while(n){//若n不是0 ,逐步将n简化,放到数组a中
j=n%;//n余2运算
if(j==)
a[num++]=i;//存储第几次是1
i++;
n/=;
}
for(i=num-;i>=;i--){//逆序遍历数组a
if(a[i]==)
printf("2(0)");
else if(a[i]==)
printf("");
else if(a[i]==)
printf("2(2)");
else if(a[i]>){
printf("2(");
cimi(a[i]);//递归调用
printf(")");
}
if(i!=)
printf("+");
}
}
int main(){
int n;
scanf("%d",&n);//输入n
cimi(n);//调用函数
return ;//结束程序
}
 
 

C语言 · 2的次幂表示 · 幂方分解的更多相关文章

  1. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. Java实现 蓝桥杯VIP 算法训练 幂方分解

    问题描述 任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步 ...

  3. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  4. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  5. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  6. ALGO-12_蓝桥杯_算法训练_幂方分解(递归)

    问题描述 任何一个正整数都可以用2的幂次方表示.例如: =++ 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: ()+()+() 进一步:= ++ (21用2表示) ...

  7. 蓝桥杯—ALGO-12 幂方分解(递归递推)

    问题描述 任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步 ...

  8. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  9. hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】

    #include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...

随机推荐

  1. 深入了解MyBatis参数

    参考1 参考2 参考3

  2. Ways to 优化JAVA程序设计和编码,提高JAVA性能

    通过使用一些辅助性工具来找到程序中的瓶颈,然后就可以对瓶颈部分的代码进行优化.一般有两种方案:即优化代码或更改设计方法.我们一般会选择后者,因为不去调用以下代码要比调用一些优化的代码更能提高程序的性能 ...

  3. [转]MegCup2015初赛题

    原文链接 门票题:数独有多少种对解线上没有1的填法? 这道"门票题"虽说只是"热身",但还是有一定难度的.共有245名选手通过各种方法拿到了门票.下面,我们就为 ...

  4. 为同一部电脑设置2个IP地址

    为同一部电脑设置2个IP地址 在HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\NetTrans下 点击0000.0001,000 ...

  5. IE浏览器中,设置指定程序查看源文件

    第一步:     先按Ctrl+R,输入regedit进入注册表     依次找到 "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explo ...

  6. ios 利用UIScrollView实现图片缩放

    前言:我们希望做出的效果是,实现图片的分页滑动,且每张图片都可以双击或用手指捏合来缩放大小.上一篇讲解UIGestureRecognizer的中,我们介绍的UIPinchGestureRecogniz ...

  7. asp.net core mvc视频A:笔记4-1.数据验证

    开发建议:永远不要相信客户端提交过来的数据!!! 前端数据验证定位:提高用户体验,仅此而已! 后端数据验证定位:保证系统安全与数据完整!!! 实例:用户登录验证 定义一个用户登录类 在用户登录类基础上 ...

  8. Linux内存初始化(一)

    一.前言 一直以来,我都非常着迷于两种电影拍摄手法:一种是慢镜头,将每一个细节全方位的展现给观众.另外一种就是快镜头,多半是反应一个时代的变迁,从非常长的时间段中,截取几个典型的snapshot,合成 ...

  9. Bridge - 桥接模式

    1. 概述 在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,那么如何应对这种“多维度的变化”?如何利用面向对象的技术来使得该类型能够轻松的沿着多个方向进行变化,而又不引入额外的复杂度 ...

  10. 兔子--eclipse设置编码格式

    设置编码格式 a:设置eclipse的默认编码格式:window->preferences->Workspace->Text File Encoding b:设置单个项目的编码格式: ...