PAT 甲级 1081 Rational Sum (数据不严谨 点名批评)
https://pintia.cn/problem-sets/994805342720868352/problems/994805386161274880
Given N rational numbers in the form "numerator/denominator", you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (<=100), followed in the next line N rational numbers "a1/b1 a2/b2 ..." where all the numerators and denominators are in the range of "long int". If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form "integer numerator/denominator" where "integer" is the integer part of the sum, "numerator" < "denominator", and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.
Sample Input 1:
5
2/5 4/15 1/30 -2/60 8/3
Sample Output 1:
3 1/3
Sample Input 2:
2
4/3 2/3
Sample Output 2:
2
Sample Input 3:
3
1/3 -1/6 1/8
Sample Output 3:
7/24
代码:
#include <bits/stdc++.h>
using namespace std; long long a[111], b[111];
long long sum, m; long long gcd(long long x, long long y) {
long long z = x % y;
while(z) {
x = y;
y = z;
z = x % y;
}
return y;
} long long ad(long long x, long long y) {
if(x > y)
swap(x, y);
if(y % x == 0)
return y;
else
return x * y / gcd(x, y);
} void display(long long p, long long q) {
if(q == 0 || p == 0)
printf("0\n");
else {
bool flag = true;
if(p < 0) {
flag = false;
printf("-");
p = abs(p);
} if(p / q != 0) {
if(p % q == 0)
printf("%lld\n", p / q);
else {
long long mm = p / q;
printf("%lld ", mm);
if(!flag) cout << "-";
printf("%lld/%lld", (p - mm * q) / gcd(p - mm * q, q), q / gcd(p - mm * q, q));
}
} else {
printf("%lld/%lld", p / gcd(p, q), q / gcd(p, q));
} }
} void add(long long x, long long y) {
// sum / m + x / y
// = (sum * y + m * x) / (x * y);
long long xx = sum * y + m * x;
long long yy = m * y;
long long g = gcd(abs(xx), abs(yy));
xx /= g;
yy /= g;
sum = xx;
m = yy;
} int main() { int N;
scanf("%d", &N);
for(int i = 1; i <= N; i ++)
scanf("%lld/%lld", &a[i], &b[i]); if(N == 0) {
printf("0\n");
return 0;
}
if(N ==1) {
display(a[1], b[1]);
return 0;
} /*
long long m = ad(b[1], b[2]);
for(int i = 3; i <= N; i ++) {
m = ad(m, b[i]);
} long long sum = 0;
for(int i = 1; i <= N; i ++) {
sum += a[i] * m / b[i];
}
*/
sum = a[1];
m = b[1];
for(int i = 2; i <= N; i ++) {
add(a[i], b[i]);
} if(m < 0) {
sum = -sum;
m = -m;
}
display(sum, m); return 0;
}
PAT 甲级 1081 Rational Sum (数据不严谨 点名批评)的更多相关文章
- PAT Advanced 1081 Rational Sum (20) [数学问题-分数的四则运算]
题目 Given N rational numbers in the form "numerator/denominator", you are supposed to calcu ...
- PAT甲级——A1081 Rational Sum
Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum. ...
- PAT 1081 Rational Sum
1081 Rational Sum (20 分) Given N rational numbers in the form numerator/denominator, you are suppo ...
- PAT 1081 Rational Sum[分子求和][比较]
1081 Rational Sum (20 分) Given N rational numbers in the form numerator/denominator, you are suppose ...
- 【PAT甲级】1081 Rational Sum (20 分)
题意: 输入一个正整数N(<=100),接着输入N个由两个整数和一个/组成的分数.输出N个分数的和. AAAAAccepted code: #define HAVE_STRUCT_TIMESPE ...
- PAT甲题题解-1081. Rational Sum (20)-模拟分数计算
模拟计算一些分数的和,结果以带分数的形式输出注意一些细节即可 #include <iostream> #include <cstdio> #include <algori ...
- PAT (Advanced Level) 1081. Rational Sum (20)
简单模拟题. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- 1081. Rational Sum (20)
the problem is from PAT,which website is http://pat.zju.edu.cn/contests/pat-a-practise/1081 the code ...
- 1081. Rational Sum (20) -最大公约数
题目如下: Given N rational numbers in the form "numerator/denominator", you are supposed to ca ...
随机推荐
- Python学习笔记十:json序列化,软件结构目录规范,ATM作业讲解,import本质论
json序列化 将系统的某个状态保存为字符串(挂起),序列化. import json json.dumps():序列化 json.loads():反序列化 简单类型数据处理 import pickl ...
- ACM1009:FatMouse' Trade
Problem Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding th ...
- CALL TRANSACTION
概要 SUBMITと違い.トランザクションコードで呼び出すのが特徴. アドオンからの伝票照会やバッチインプットによるSAPへのデータ登録/更新処理にも利用される. なお.呼び出された側から呼び出し元へ ...
- 20155234 实验三 敏捷开发与XP实践
20155234 实验三 敏捷开发与XP实践 实验内容 1.XP基础 2.XP核心实践 3.相关工具 实验步骤 (一)敏捷开发与XP 敏捷开发(Agile Development)是一种以人为核心.迭 ...
- pwd命令的实现
pwd 命令描述 Linux中用 pwd 命令来查看"当前工作目录"的完整路径. 简单得说,每当你在终端进行操作时,你都会有一个当前工作目录. 在不太确定当前位置时,就会使用pwd ...
- 20155301 《Java程序设计》实验一(Java开发环境的熟悉)实验报告
20155301 <Java程序设计>实验一(Java开发环境的熟悉)实验报告 一.实验内容及步骤 (一)使用JDK编译.运行简单的java程序 命令行下的程序开发 步骤:打开cmd,建立 ...
- 20155305 2016-2017-2 《Java程序设计》 实验五 Java网络编程及安全实验报告
20155305 2016-2017-2 <Java程序设计> 实验五 Java网络编程及安全实验报告 实验内容 1.掌握Socket程序的编写. 2.掌握密码技术的使用. 3.设计安全传 ...
- Dlib库中实现正脸人脸检测的测试代码
Dlib库中提供了正脸人脸检测的接口,这里参考dlib/examples/face_detection_ex.cpp中的代码,通过调用Dlib中的接口,实现正脸人脸检测的测试代码,测试代码如下: #i ...
- 【LG1445】樱花
[LG1445]樱花 题面 洛谷 题解 \[ \frac 1x+\frac 1y=\frac 1{n!}\\ \frac{x+y}{xy}=\frac 1{n!}\\ n!(x+y)=xy\\ xy- ...
- 最优布线问题(wire.cpp)
最优布线问题(wire.cpp) [问题描述] 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来.两台计算机被连接是指它们间有数据线连接.由于计算机所处的位置不同,因此不同的两台计算机的 ...