基于PCA和SVM的人脸识别
程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段
数据的预处理的流程图如下:
数据的训练流程图如下:
识别流程:
下面贴上一些matlab的实现代码:
数据预处理主要是两个函数,ReadFaces和scaling,第一个函数是将训练图像存成一个200*10304的矩阵,第二个是对数据进行规格化,具体代码如下:
function [imgRow,imgCol,FaceContainer,faceLabel] = ReadFaces(nFacesPerson,nPerson,bTest)
%nFacesPersonn-----每个人需要读入的样本数,默认为5
%nPerson ------需要读入的人数,默认为全部四十个人
%bTest ------bool型参数。默认为0,表示读入样本前五张;1:表示后五张
%输出: FaceContainer------向量化人脸容器,nPerson*10304的二维矩阵,每行对应一个人脸向量
if nargin==0 %默认值
nFacesPerson = 5;
nPerson = 40;
bTest = 0;
elseif nargin<3
bTest = 0;
end
img=imread('PCA_face/data/ORL/s1_1.bmp') %为计算尺寸先读一张
[imgRow,imgCol]=size(img);
FaceContainer = zeros(nFacesPerson*nPerson,imgRow*imgCol);
facelabel = zeros(nFacesPerson*nPerson,1);
%读入训练数据
for i=1:nPerson %不同的人
i1=mod(i,10);
i0=char(i/10);
strPath='PCA_face/data/ORL/s';
if(i0~=0)
strPath=strcat(strPath,'0'+i0);
end
strPath=strcat(strPath,'0'+i1);
strPath=strcat(strPath,'_');
tempStrPath=strPath;
for j=1:nFacesPerson %每一个人的前五张
strPath=tempStrPath;
if bTest==0
strPath=strcat(strPath,'0'+j);
else
strPath=strcat(strPath,num2str(5+j));
end
strPath = strcat(strPath,'.bmp');
img=imread(strPath);
%把读入的图像按列存储为行向量放入向量化人脸容器FaceContainer的对应行中
FaceContainer((i-1)*nFacesPerson+j,:)= img(:)';
faceLabel((i-1)*nFacesPerson+j) = i;
end
end
%保存人脸样本矩阵
save('PCA_face/Mat/FaceMat.mat','FaceContainer');
function [ SVFM, lowVec,upVec ] = scaling( VecFeaMat,bTest,lRealBVec,uRealBVec)
% Input: VecFeaMat --- 需要scaling的 m*n 维数据矩阵,每行一个样本特征向量,列数为维数
% bTest --- =1:说明是对于测试样本进行scaling,此时必须提供 lRealBVec 和 uRealBVec
% 的值,此二值应该是在对训练样本 scaling 时得到的
% =0:默认值,对训练样本进行 scaling
% lRealBVec --- n维向量,对训练样本 scaling 时得到的各维的实际下限信息
% uRealBVec --- n维向量,对训练样本 scaling 时得到的各维的实际上限信息
%
% output: SVFM --- VecFeaMat的 scaling 版本
% upVec --- 各维特征的上限(只在对训练样本scaling时有意义,bTest = 0)
% lowVec --- 各维特征的下限(只在对训练样本scaling时有意义,bTest = 0)
if nargin<2
bTest=0;
end
lTargB=-1;
uTargB=1;
[m n] = size(VecFeaMat);
if bTest
if nargin<4
error('to do scaling on test,param must 4');
end
if nargout>1
error('when do scaling ,only one output is supported');
end
for iCol = 1:n
if lRealBVec(iCol)==uRealBVec(iCol)
SVFM(:,iCol) = uRealBVec(iCol);
SVFM(:,iCol) = 0;
else
SVFM(:,iCol) = lTargB + ( VecFeaMat(:,iCol) - lRealBVec(iCol) ) / ( uRealBVec(iCol) - lRealBVec(iCol) ) * ( uTargB - lTargB );
end
end
else %bTest = 0
upVec = zeros(1,n);
lowVec= zeros(1,n);
for iCol = 1:n
lowVec(iCol) = min( VecFeaMat(:,iCol) );
upVec(iCol) = max( VecFeaMat(:,iCol) );
if lowVec(iCol) == upVec(iCol)
SVFM(:,iCol) = upVec(iCol);
SVFM(:,iCol) = 0;
else
SVFM(:,iCol) = lTargB + ( VecFeaMat(:,iCol) - lowVec(iCol) ) / ( upVec(iCol) - lowVec(iCol) ) * ( uTargB - lTargB );
end
end
end
end
训练阶段的函数是train,代码如下:
function train()
%整个训练过程包括读入图像,PCA降维以及多类SVM训练,各个阶段的处理结果分别保存至文件:
% 将PCA变换矩阵W保存至 PCA_face\Mat\PCA.mat
% 将scaling的各维上下界信息保存至 PCA_face\Mat\scaling.mat
% 将PCA降维并且scaling后的数据保存至 PCA_face\Mat\trainData.mat
% 将多类SVM的训练信息保存至 PCA_face\Mat\multiSVMTrain.mat
global imgRow;
global imgCol;
global W
display('');
display('');
display('训练开始.....');
nPerson = 40;
nFacesPerson = 5;
nSplPerClass=zeros(1,nPerson);
display('读入人脸数据');
[ imgRow, imgCol, FaceContainer, faceLabel] = ReadFaces(nFacesPerson, nPerson);
save('PCA_face\Mat\FaceMat.mat','FaceContainer');
display('..................');
nFaces = size(FaceContainer, 1);%样本人脸数目
display('PCA降维...');
[pcaFaces, W] = fastPCA(FaceContainer, 20);
%pcaFaces是200*20的矩阵,每一行代表一张主成分脸
%W是分离变换矩阵, 10304*20的矩阵
visualize_pc(W);
display('............');
X=pcaFaces;
[X,A0,B0] = scaling(X);
save('PCA_face\Mat\scaling.mat','A0','B0');
%保存scaling的数据至trainData.mat
TrainData = X;
trainLabel = faceLabel;
save('PCA_face\Mat\trainData.mat','TrainData','trainLabel');
display('.........保存scaling的数据至trainData.mat..........');
for iPerson = 1:nPerson
nSplPerClass(iPerson) = sum((trainLabel == iPerson));
end
multiSVMStruct = multiSVMTrain (TrainData, nSplPerClass, nPerson, Inf, 1);
display('正在保存训练结果.....');
save('PCA_face\Mat\multiSVMTrain.mat','multiSVMStruct');
display('训练结束.................');
end
识别阶段的函数是
function class = SVMClassify(TestFace, multiSVMStruct)
%class ------识别出的类别
%TestFace------测试图像转换的行向量经过降维后的1*20的行向量,并经过规定化到-1~+1之间
%multiSVMStruct结构体数组,保存了两两分类的svm结构体信息
if nargin<2
t = dir('PCA_face\Mat\multiSVMTrain.mat');
if length(t) == 0
error('没有找到训练结果');
end
load('PCA_face\Mat\multiSVMTrain.mat');
end
%nClass = multiSVMStruct.nClass;
nClass=40;
%CASVMStruct = multiSVMStruct.CASVMStruct;
CASVMStruct = multiSVMStruct;
%%%%%投票策略解决多类问题
m = size(TestFace, 1);
Voting = zeros(m,nClass);
for iIndex = 1:nClass-1
for jIndex = iIndex+1:nClass
classes = svmclassify(CASVMStruct{iIndex}{jIndex},TestFace);
%voting
Voting(:,iIndex) = Voting(:,iIndex) + (classes==1);
Voting(:,jIndex) = Voting(:,jIndex) + (classes==0);
end
end
%decision by voting
[vecMaxValue, class] = max(Voting, [ ] , 2);
end
基于PCA和SVM的人脸识别的更多相关文章
- 基于PCA和SVM的人脸识别系统-error修改
------------------------------------------------- Undefined function or variable 'W'. Error in class ...
- opencv基于PCA降维算法的人脸识别
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...
- 转:基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)【模式识别中的翘楚】
文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴 ...
- 关于运行“基于极限学习机ELM的人脸识别程序”代码犯下的一些错误
代码来源 基于极限学习机ELM的人脸识别程序 感谢文章主的分享 我的环境是 win10 anaconda Command line client (version 1.6.5)(conda 4.3.3 ...
- C#实现基于ffmepg加虹软的人脸识别
关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV ...
- C#实现基于ffmpeg加虹软的人脸识别demo及开发分享
对开发库的C#封装,屏蔽使用细节,可以快速安全的调用人脸识别相关API.具体见github地址.新增对.NET Core的支持,在Linux(Ubuntu下)测试通过.具体的使用例子和Demo详解,参 ...
- C#实现基于ffmpeg加虹软的人脸识别
关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸 识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenC ...
- 基于Dlib、OpenCV开发人脸识别程序的开发建议
前言 在去年十月的时候参加了一个小比赛,做了一个人脸识别程序并很意外地获得省里面的一等奖,视频演示链接在这里,有同学想要做这方面的毕业设计or课程设计,发一篇博客来分享一下当时的开发过程. 视频演示链 ...
- 基于Python与命令行人脸识别项目(系列一)
Face Recognition 人脸识别 摘要:本项目face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,方便大家使用.对于本项目可以使用 ...
随机推荐
- iOS-网络编程(二)文件上传和断点离线下载
一. iOS中发送HTTP请求的方案 在iOS中,我们常用发送HTTP请求的方案有苹果原生(自带)NSURLConnection:用法简单,最古老最经典最直接的一种方案 (iOS 9.0弃用)NSUR ...
- iOS 时区问题总结 NSTimeZone
基本概念 GMT 0:00 格林威治标准时间; UTC +00:00 校准的全球时间; CCD +08:00 中国标准时间 [来自百度百科] 夏时制,英文"DaylightSavingTim ...
- Linux 下文件监控
本文转自http://www.jiangmiao.org/blog/2179.html 在日常应用中,常常会遇到以下场景,监控文件夹A,若文件夹中的B文件发生变化,则执行C命令.Linux下可以通过i ...
- [Polymer] Introduction
install Polymer and explore creating our first custom element: bower install polymer index.html: < ...
- MySQL数据库的双向加密方式
如果你正在运行使用MySQL的Web应用程序,那么你把密码或者其他敏感信息保存在应用程序里的机会就很大.保护这些数据免受或者窥探者的获取 是一个令人关注的重要问题,因为您既不能让未经授权的人员使用或者 ...
- 配置squid代理服务
1. 简述一下squid的用途?squid可以做代理和缓存服务器,而做代理时,可以分为正向代理和反向代理.正向代理用在企业办公环境中,企业员工上网通过代理来上网,代理的缓存功能可以为企业节省宝贵的带宽 ...
- 移动端(IOS)iframe监听不到 onscroll 事件
问题描述: 我在一个页面A中有瀑布流,点击瀑布流中的图片需要进入到另外一个页面B,点击返回需要回到页面A中点击的位置,为了实现该效果所以在页面A中嵌入iframe,iframe指向页面B,页面B中同样 ...
- sql练习总结(一)
最近在学sql,遇到了这么一道题: 写出一条Sql语句:取出表A中第31到第40记录(SQLServer,以自动增长的ID作为主键,注意:ID可能不是连续的. 把所能想到的实现方法都做了一遍: 1.用 ...
- C#中对Excel进行操作
工作中要处理一批数据,主要是处理从别处导出来的Excel表格(大概有一千多行,三十多列),拿到表格对Excel表格进行分析,按照一定的规则进行拆分成为一万多行的数据:首先这个需求要用程序进行处理的背景 ...
- C#list泛型集合
//创建list泛型集合 List<int> ilist = new List<int>(); ilist.Add(); ilist.Add(); ilist.AddRange ...