Consider all integer combinations ofabfor 2a5 and 2b5:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated byabfor 2a100 and 2b100?

题目大意:

考虑 ab 在 2 a 5,2 b 5下的所有整数组合:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

如果将这些数字排序,并去除重复的,我们得到如下15个数字的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

ab 在 2 a 100,2 b 100 下生成的序列中有多少个不同的项?

算法设计(方法1):

1、将ab 进行因数分解,以字符串的形式保存,eg.  285 = (4 * 7)5 = (22 * 7)= 2^10*7^5

2、用一个结构体数组保存所有的数的因数分解表达式

3、对上述结构体数组排序

4、遍历此数组,找出不相同的项的总数

//(Problem 29)Distinct powers
// Completed on Tue, 19 Nov 2013, 07:28
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <string.h> const int prim[] = {, , , , , , , , , , , ,,
, , , , , , , , , , , }; struct node
{
char list[]; }num[]; int cmp(const void *a, const void *b)
{
return strcmp((*(struct node*)a).list, (*(struct node*)b).list);
} char * explain(int a, int b) /*将a^b分解因数*/
{
char s[], ch;
char *p;
p = s;
int t;
for(int i = ; i < ; i++) {
t = ;
while(a % prim[i] == ) {
if(t == ) {
sprintf(p,"%d",prim[i]);
}
a /= prim[i];
t++;
}
if(t > ) {
p = s + strlen(s);
*p++ = '^';
t = t * b;
sprintf(p,"%d",t);
p = s + strlen(s);
if(a != ) {
*p++ = '*';
} else {
break;
}
}
}
return s;
} void solve(void)
{
int i, j, k, sum;
k = ;
for(i = ; i < ; i++) {
for(j = ; j < ; j++) {
strcpy(num[k++].list, explain(i,j));
}
}
qsort(num, , sizeof(num[]),cmp);
sum = ;
for(i = ; i < ; ) {
j = i + ;
if(j >= ) break;
while(strcmp(num[i].list, num[j].list) == ) {
j++;
}
i = j;
sum ++;
}
printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}

算法设计(方法2):

仔细考察数字矩阵的规律,可以发现:

能够发生重复的数字,将他们因数分解以后,得到的指数的底都是相同的,e.g. 16与64……,在2~100中,能够发生重复数字的底只有4、8、16、32、64、9、27、81、25、36、49、81、100,于是可以在底为2的时候就排除掉以4、8、16、32、64为底的重复的数字。

#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h> #define N 101
#define M 601 int main(void)
{
int answer = ;
int i, j, k, l;
bool flag[M]; bool use[N] = {false}; for (i = ; i < N; i++)
{
if (!use[i])
{
int t = i; memset(flag, false, sizeof(flag)); for (j = ; j < N; j++)
{
t = t * i;
if (t >= N)
{
break;
}
use[t] = true;
} for (k = ; k < j; k++)
{
for (l = ; l < N; l++)
{
flag[k*l] = true;
}
} for (k = ; k < M; k++)
{
if(flag[k]){
answer++;
} }
}
}
printf("%d\n",answer);
return ;
}
Answer:
9183

(Problem 29)Distinct powers的更多相关文章

  1. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  2. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  3. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. IOS开发笔记 IOS如何访问通讯录

    IOS开发笔记  IOS如何访问通讯录 其实我是反对这类的需求,你说你读我的隐私,我肯定不愿意的. 幸好ios6.0 以后给了个权限控制.当打开app的时候你可以选择拒绝. 实现方法: [plain] ...

  2. ubuntu之iptables

    1.更新iptables并立即生效: a.保存当前设置:iptables-save > /etc/iptables.up.rules b.修改iptables规则: 例如: -I INPUT - ...

  3. setInterval()与clearInterval()的用法

    setInterval() 方法可按照指定的周期来调用函数或计算表达式.  --简单地说就是过一段时间调用一次该函数 setInterval() 方法会不停地调用函数,直到 clearInterval ...

  4. Android消息机制之Handler

    Android为什么要提供Handler Android建议我们不要在UI线程中执行耗时操作,因为这很容易导致ANR异常(在Android源码中我们可以看到,UI如果对用户的操作超过5秒无响应,就会报 ...

  5. Android乐学成语之自定义Adapter

    一.首先对Adapter概念深刻的了解 首先看看他的继承图

  6. zoj 2256 Mincost

    #include<stdio.h> int main(void) { int kil; ; double sum; ) { sum=; flag=; while(kil) { ) { su ...

  7. typedef,static,const用法

    一.typedef主要功能是定义一个已存在类型的别名,但是和宏并存 宏与typedef区别 1.宏定义只是简单的字符串替换 2.typedef定义的类型是类型的别名,typedef后面是一个整体声明, ...

  8. 驴吃胡萝卜问题——牛客/FEI

    一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜.已知驴一次性可驮1000根胡萝卜,但每走1公里又要吃掉1根胡萝卜.问:商人最多可卖出多少胡萝卜? 一个商人骑一头驴要穿越1000公里长 ...

  9. Struts2中获取HttpServletRequest,HttpSession等的几种方式

    转自:http://www.kaifajie.cn/struts/8944.html package com.log; import java.io.IOException; import java. ...

  10. javascript 绝对路径工具类

    // #region 取虚拟目录示例代码 //获取网站虚拟目录名称 function GetVirtualDirectoryName() { var pathname = removeFirstSla ...