Consider all integer combinations ofabfor 2a5 and 2b5:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated byabfor 2a100 and 2b100?

题目大意:

考虑 ab 在 2 a 5,2 b 5下的所有整数组合:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

如果将这些数字排序,并去除重复的,我们得到如下15个数字的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

ab 在 2 a 100,2 b 100 下生成的序列中有多少个不同的项?

算法设计(方法1):

1、将ab 进行因数分解,以字符串的形式保存,eg.  285 = (4 * 7)5 = (22 * 7)= 2^10*7^5

2、用一个结构体数组保存所有的数的因数分解表达式

3、对上述结构体数组排序

4、遍历此数组,找出不相同的项的总数

//(Problem 29)Distinct powers
// Completed on Tue, 19 Nov 2013, 07:28
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <string.h> const int prim[] = {, , , , , , , , , , , ,,
, , , , , , , , , , , }; struct node
{
char list[]; }num[]; int cmp(const void *a, const void *b)
{
return strcmp((*(struct node*)a).list, (*(struct node*)b).list);
} char * explain(int a, int b) /*将a^b分解因数*/
{
char s[], ch;
char *p;
p = s;
int t;
for(int i = ; i < ; i++) {
t = ;
while(a % prim[i] == ) {
if(t == ) {
sprintf(p,"%d",prim[i]);
}
a /= prim[i];
t++;
}
if(t > ) {
p = s + strlen(s);
*p++ = '^';
t = t * b;
sprintf(p,"%d",t);
p = s + strlen(s);
if(a != ) {
*p++ = '*';
} else {
break;
}
}
}
return s;
} void solve(void)
{
int i, j, k, sum;
k = ;
for(i = ; i < ; i++) {
for(j = ; j < ; j++) {
strcpy(num[k++].list, explain(i,j));
}
}
qsort(num, , sizeof(num[]),cmp);
sum = ;
for(i = ; i < ; ) {
j = i + ;
if(j >= ) break;
while(strcmp(num[i].list, num[j].list) == ) {
j++;
}
i = j;
sum ++;
}
printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}

算法设计(方法2):

仔细考察数字矩阵的规律,可以发现:

能够发生重复的数字,将他们因数分解以后,得到的指数的底都是相同的,e.g. 16与64……,在2~100中,能够发生重复数字的底只有4、8、16、32、64、9、27、81、25、36、49、81、100,于是可以在底为2的时候就排除掉以4、8、16、32、64为底的重复的数字。

#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h> #define N 101
#define M 601 int main(void)
{
int answer = ;
int i, j, k, l;
bool flag[M]; bool use[N] = {false}; for (i = ; i < N; i++)
{
if (!use[i])
{
int t = i; memset(flag, false, sizeof(flag)); for (j = ; j < N; j++)
{
t = t * i;
if (t >= N)
{
break;
}
use[t] = true;
} for (k = ; k < j; k++)
{
for (l = ; l < N; l++)
{
flag[k*l] = true;
}
} for (k = ; k < M; k++)
{
if(flag[k]){
answer++;
} }
}
}
printf("%d\n",answer);
return ;
}
Answer:
9183

(Problem 29)Distinct powers的更多相关文章

  1. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  2. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  3. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. php 配置文件

    <?php return array( 'TMPL_L_DELIM'=>'<{', //配置左定界符 'TMPL_R_DELIM'=>'}>', //配置右定界符 'DB ...

  2. 第25周五迷茫定位&转行理论建议

    今天下午请假办了无房证明和单身证明,准备开始贷款买房的征程,在犹豫纠结中我选择推进这个事情,之前的经验告诉我生活中可以面临改变或不改变境况的选择是要尽可能的选择改变,因为我还年轻.回来后知乎上看了一个 ...

  3. 01-复杂度2. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  4. 掌握下面常用函数,学php不再难

    一.写入文件 1.打开资源(文件)fopen($filename,$mode) 2.写文件fwrite($handle,$str) 3.关闭文件fclose($handle) 4.一步写入file_p ...

  5. Node.js模块os

    OS 操作系统模块 os.hostname() 操作系统的主机名. os.type() 操作系统的名称 os.release() 操作系统的发行版本 os.uptime() 当前系统的时间 以秒为 o ...

  6. ongl 表达式

    struts.xml简单配置 <!-- (默认false)设置ognl表达式是否支持静态方法 --> <constant name="struts.ognl.allowSt ...

  7. HTML静态网页(图片热点、网页划区、拼接及表单的使用)

    图片热点: 规划出图片上的一个区域,可以做出超链接,直接点击图片区域就可以完成跳转的效果. 示例: 网页划区: 在一个网页里,规划出一个区域用来展示另一个网页的内容. 示例:   网页的拼接: 在一个 ...

  8. C#连接Oracle数据库基本类

    C#用来连接oracle数据库的基本类: using System; using System.Collections.Generic; using System.Linq; using System ...

  9. git学习基础教程

    分享一个git学习基础教程 http://pan.baidu.com/s/1o6ugkGE 具体在网盘里面的内容..需要的学习可以直接下.

  10. Web学习之自定义标签

    1.编写一个实现Tag接口的Java类(标签处理器类) package me.gacl.web.tag; import java.io.IOException; import javax.servle ...