Consider all integer combinations ofabfor 2a5 and 2b5:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated byabfor 2a100 and 2b100?

题目大意:

考虑 ab 在 2 a 5,2 b 5下的所有整数组合:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

如果将这些数字排序,并去除重复的,我们得到如下15个数字的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

ab 在 2 a 100,2 b 100 下生成的序列中有多少个不同的项?

算法设计(方法1):

1、将ab 进行因数分解,以字符串的形式保存,eg.  285 = (4 * 7)5 = (22 * 7)= 2^10*7^5

2、用一个结构体数组保存所有的数的因数分解表达式

3、对上述结构体数组排序

4、遍历此数组,找出不相同的项的总数

//(Problem 29)Distinct powers
// Completed on Tue, 19 Nov 2013, 07:28
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <string.h> const int prim[] = {, , , , , , , , , , , ,,
, , , , , , , , , , , }; struct node
{
char list[]; }num[]; int cmp(const void *a, const void *b)
{
return strcmp((*(struct node*)a).list, (*(struct node*)b).list);
} char * explain(int a, int b) /*将a^b分解因数*/
{
char s[], ch;
char *p;
p = s;
int t;
for(int i = ; i < ; i++) {
t = ;
while(a % prim[i] == ) {
if(t == ) {
sprintf(p,"%d",prim[i]);
}
a /= prim[i];
t++;
}
if(t > ) {
p = s + strlen(s);
*p++ = '^';
t = t * b;
sprintf(p,"%d",t);
p = s + strlen(s);
if(a != ) {
*p++ = '*';
} else {
break;
}
}
}
return s;
} void solve(void)
{
int i, j, k, sum;
k = ;
for(i = ; i < ; i++) {
for(j = ; j < ; j++) {
strcpy(num[k++].list, explain(i,j));
}
}
qsort(num, , sizeof(num[]),cmp);
sum = ;
for(i = ; i < ; ) {
j = i + ;
if(j >= ) break;
while(strcmp(num[i].list, num[j].list) == ) {
j++;
}
i = j;
sum ++;
}
printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}

算法设计(方法2):

仔细考察数字矩阵的规律,可以发现:

能够发生重复的数字,将他们因数分解以后,得到的指数的底都是相同的,e.g. 16与64……,在2~100中,能够发生重复数字的底只有4、8、16、32、64、9、27、81、25、36、49、81、100,于是可以在底为2的时候就排除掉以4、8、16、32、64为底的重复的数字。

#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h> #define N 101
#define M 601 int main(void)
{
int answer = ;
int i, j, k, l;
bool flag[M]; bool use[N] = {false}; for (i = ; i < N; i++)
{
if (!use[i])
{
int t = i; memset(flag, false, sizeof(flag)); for (j = ; j < N; j++)
{
t = t * i;
if (t >= N)
{
break;
}
use[t] = true;
} for (k = ; k < j; k++)
{
for (l = ; l < N; l++)
{
flag[k*l] = true;
}
} for (k = ; k < M; k++)
{
if(flag[k]){
answer++;
} }
}
}
printf("%d\n",answer);
return ;
}
Answer:
9183

(Problem 29)Distinct powers的更多相关文章

  1. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  2. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  3. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. VM 映像

     让我们一起欢呼吧!随着最近Microsoft Azure运行时的发布,我们非常高兴地宣布发布 OS映像的继承性产品:新 VM映像.等一下-有些人可能会觉得这听起来有点耳熟.没错,一个月前在旧金山 ...

  2. 自己定义标签中tagsupport的一些方法

    TagSupport生命周期 TagSupport类分别实现了Tag与IterationTag界面,其预设的回传值是:doStartTag()回传 SKIP_BODY.EVAL_BODY_INCLUD ...

  3. MongoDB(三)mongoDB下载和安装

    软件下载 下载mongodb最新的包:http://www.mongodb.org/downloads 下载mongodb可视化界面,mongoVUE:http://download.csdn.net ...

  4. 使用 system.io.filesysteminfo 来查找文件。

    如何快速搜索你想找到文件呢.大家知道Windows系统自带了搜索,很方便,下面介绍自己编写的也可以达到同样的效果.注意.有些文件的访问需要更高的权限.这里暂且去掉那些文件目录的搜索.不然会出现erro ...

  5. Java 网络编程(一) 网络基础知识

    链接地址:http://www.cnblogs.com/mengdd/archive/2013/03/09/2951826.html 网络基础知识 网络编程的目的:直接或间接地通过网络协议与其他计算机 ...

  6. 简单的mvvm light 应用

      public  class MainStudentModel:ViewModelBase    { //实体        private StudentModel stu = new Stude ...

  7. mysql查询数据库中包含某字段(列名)的所有表

    SELECT TABLE_NAME '表名',TABLE_SCHEMA '数据库名',ORDINAL_POSITION '顺序',COLUMN_NAME '字段',DATA_TYPE '类型' ,CH ...

  8. ios如何实现推送通知

    推送通知的步骤:1.询问是否允许推送通知.2.如果用户允许在APPDELEGATE 中实现 - (void)application:(UIApplication *)application didRe ...

  9. Ajax 生成流文件下载 以及复选框的实现

    JQuery的ajax函数的返回类型只有xml.text.json.html等类型,没有“流”类型,所以我们要实现ajax下载,不能够使用相应的ajax函数进行文件下载.但可以用js生成一个form, ...

  10. 数组length属性的一些特性

    ~~·数组的length属性是可读写的 var colors = ["blue","red","green"];colors.length ...