包括内容如下图:

使用直接估计法,置信区间置信率的估计:

1.使用二项分布直接估计

$p(0.04<\hat{p}<0.06) = \sum_{0.04n\leq k \leq 0.06n}{n \choose k}0.05^{k}0.95^{n-k}$

low=ceil(n*0.04);%上取整
high=floor(n*0.06);%下取整
prob = 0;
for i=low:1:high
prob = prob+nchoosek(n,i)*(0.05^i)*(0.95^(n-i));
end

2.使用正态分布近似

$\mu = p = 0.05,\sigma^2 = \frac{p(1-p)}{n} = \frac{0.05*0.95}{n}$

normcdf(0.06,0.05,sigma/x(i)^0.5) - normcdf(0.04,0.05,sigma/x(i)^0.5)
warning off all;
clear all;clc;close all;
x=500:1:1500;
y = zeros(1,size(x,2));
y2 = zeros(1,size(x,2));
sigma = sqrt(0.05*0.95);
for i =1:size(x,2)
y(i) = adPredict(x(i));
y2(i) = normcdf(0.06,0.05,sigma/x(i)^0.5) - normcdf(0.04,0.05,sigma/x(i)^0.5);
end plot(x,y,'b-'); hold on;
plot(x,y2,'r-');
hold on;
x1=[500 1500];
y1=[0.85 0.85];
plot(x1,y1,'y-');

打印曲线:观测到,n=1000,差不多置信度会到达0.85

AUC概念及计算:

sklearn代码:sklearn中有现成方法,计算一组TPR,FPR,然后plot就可以;AUC也可以直接调用方法。

import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve digits = datasets.load_digits() X, y = digits.data, digits.target
X = StandardScaler().fit_transform(X) # classify small against large digits
y = (y > 4).astype(np.int)
X_train = X[:-400]
y_train = y[:-400] X_test = X[-400:]
y_test = y[-400:] lrg = LogisticRegression(penalty='l1')
lrg.fit(X_train, y_train) y_test_prob=lrg.predict_proba(X_test)
P = np.where(y_test==1)[0].shape[0];
N = np.where(y_test==0)[0].shape[0]; dt = 10001
TPR = np.zeros((dt,1))
FPR = np.zeros((dt,1))
for i in range(dt):
y_test_p = y_test_prob[:,1]>=i*(1.0/(dt-1))
TP = np.where((y_test==1)&(y_test_p==True))[0].shape[0];
FN = P-TP;
FP = np.where((y_test==0)&(y_test_p==True))[0].shape[0];
TN = N - FP;
TPR[i]=TP*1.0/P
FPR[i]=FP*1.0/N plt.plot(FPR,TPR,color='black')
plt.plot(np.array([[0],[1]]),np.array([[0],[1]]),color='red')
plt.show() #use sklearn method
# fpr, tpr, thresholds = roc_curve(y_test,y_test_prob[:,1],pos_label=1)
# plt.plot(fpr,tpr,color='black')
# plt.plot(np.array([[0],[1]]),np.array([[0],[1]]),color='red')
# plt.show() rank = y_test_prob[:,1].argsort()
rank = rank.argsort()+1
auc = (sum(rank[np.where(y_test==1)[0]])-(P*1.0*(P+1)/2))/(P*N);
print auc
print roc_auc_score(y_test, y_test_prob[:,1])

click through rate prediction的更多相关文章

  1. 微软的一篇ctr预估的论文:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine。

    周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through R ...

  2. 【论文笔记】用反事实推断方法缓解标题党内容对推荐系统的影响 Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue

    Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue Authors: 王文杰,冯福利 ...

  3. 【点击模型学习笔记】Predicting Clicks_Estimating the Click-Through Rate for New Ads_MS_www2007

    概要: 微软研究院的人写的文章,提出用逻辑回归来解决ctr预估问题,是以后ctr的经典解决方式,经典文章. 详细内容: 名词: CPC -- cost per click CTR -- click t ...

  4. python命令行神器Click

    原文: http://www.lengirl.com/code/python-click.html Click 是用Python写的一个第三方模块,用于快速创建命令行.我们知道,Python内置了一个 ...

  5. Bayesian CTR Prediction for Bing

    Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...

  6. 【python】命令行神器 Click 简明笔记

    全文拷贝自 命令行神器 Click 简明笔记 Click Click 是用 Python 写的一个第三方模块,用于快速创建命令行.我们知道,Python 内置了一个 Argparse 的标准库用于创建 ...

  7. 命令行神器 Click 简明笔记

    Click 是用 Python 写的一个第三方模块,用于快速创建命令行.我们知道,Python 内置了一个 Argparse 的标准库用于创建命令行,但使用起来有些繁琐,Click 相比于 Argpa ...

  8. Andrew 机器学习课程笔记

    Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...

  9. 主流CTR预估模型的演化及对比

    https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...

随机推荐

  1. listvew加载更多

    http://bbs.51cto.com/thread-968277-1.html 又是新的一周的开始,上午自己写了上拉加载更多数据的demo,嘿嘿这里和大家分享.   android开发中,list ...

  2. C#正则表达式匹配任意字符

    原文:C#正则表达式匹配任意字符 不得不说正则很强大,尤其在字符串搜索上 匹配任意字符,包括汉字,换行符: [\s\S]*. 版权声明:本文为博主原创文章,未经博主允许不得转载.

  3. Android 打造炫目的圆形菜单 秒秒钟高仿建行圆形菜单

    原文:Android 打造炫目的圆形菜单 秒秒钟高仿建行圆形菜单 转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/43131133, ...

  4. 小巧数据库 Derby 使用攻略

    阅读目录 1. Derby 介绍 2. 稍稍配置下环境变量 3. Derby 操作和 Java 访问 回到顶部 1. Derby 介绍 将目光放在小 Derby 的原因是纯绿色.轻巧.内存占用小,分分 ...

  5. Logstash type来标记事件类型,通过type判断

    /*************** 根据type判断 input { file { type => "zj_frontend_access" path => [" ...

  6. Android中ListView无法点击

    Android中ListView无法点击 转自:http://xqjay19910131-yahoo-cn.iteye.com/blog/1319502   问题描述: ListView中Item加入 ...

  7. linux命令之uname

    uname是linux中查询系统基本信息的命令. 命令形式: uname [选项] 选项包括:(若不跟任何选项:则默认-s选项) -s, --kernel-name 输出内核名称   -n, --no ...

  8. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  9. ios 第三方qq授权登陆,第一次登陆后,再次登陆,失效

    这问题找了非常久.最后跟客服联系到.等授权成功后要对 _tencentOAuth 对象释放

  10. linux中grep使用方法具体解释

    查找特定字符串并颜色显示 [root@fwq test]# grep -n 'the' regular_express.txt --color=auto 8:I can't finish the te ...