class SimulationView extends View implements SensorEventListener {
// diameter of the balls in meters
private static final float sBallDiameter = 0.004f;
private static final float sBallDiameter2 = sBallDiameter * sBallDiameter; // friction of the virtual table and air
private static final float sFriction = 0.1f; private Sensor mAccelerometer;
private long mLastT;
private float mLastDeltaT; private float mXDpi;
private float mYDpi;
private float mMetersToPixelsX;
private float mMetersToPixelsY;
private Bitmap mBitmap;
private Bitmap mWood;
private float mXOrigin;
private float mYOrigin;
private float mSensorX;
private float mSensorY;
private long mSensorTimeStamp;
private long mCpuTimeStamp;
private float mHorizontalBound;
private float mVerticalBound;
private final ParticleSystem mParticleSystem = new ParticleSystem(); /*
* Each of our particle holds its previous and current position, its
* acceleration. for added realism each particle has its own friction
* coefficient.
*/
class Particle {
private float mPosX;
private float mPosY;
private float mAccelX;
private float mAccelY;
private float mLastPosX;
private float mLastPosY;
private float mOneMinusFriction; Particle() {
// make each particle a bit different by randomizing its
// coefficient of friction
final float r = ((float) Math.random() - 0.5f) * 0.2f;
mOneMinusFriction = 1.0f - sFriction + r;
} public void computePhysics(float sx, float sy, float dT, float dTC) {
// Force of gravity applied to our virtual object
final float m = 1000.0f; // mass of our virtual object
final float gx = -sx * m;
final float gy = -sy * m; /*
* F = mA <=> A = F / m We could simplify the code by
* completely eliminating "m" (the mass) from all the equations,
* but it would hide the concepts from this sample code.
*/
final float invm = 1.0f / m;
final float ax = gx * invm;
final float ay = gy * invm; /*
* Time-corrected Verlet integration The position Verlet
* integrator is defined as x(t+dt) = x(t) + x(t) - x(t-dt) +
* a(t).t^2 However, the above equation doesn't handle variable
* dt very well, a time-corrected version is needed: x(t+dt) =
* x(t) + (x(t) - x(t-dt)) * (dt/dt_prev) + a(t).t^2 We also add
* a simple friction term (f) to the equation: x(t+dt) = x(t) +
* (1-f) * (x(t) - x(t-dt)) * (dt/dt_prev) + a(t)t^2
*/
final float dTdT = dT * dT;
final float x = mPosX + mOneMinusFriction * dTC * (mPosX - mLastPosX) + mAccelX
* dTdT;
final float y = mPosY + mOneMinusFriction * dTC * (mPosY - mLastPosY) + mAccelY
* dTdT;
mLastPosX = mPosX;
mLastPosY = mPosY;
mPosX = x;
mPosY = y;
mAccelX = ax;
mAccelY = ay;
} /*
* Resolving constraints and collisions with the Verlet integrator
* can be very simple, we simply need to move a colliding or
* constrained particle in such way that the constraint is
* satisfied.
*/
public void resolveCollisionWithBounds() {
final float xmax = mHorizontalBound;
final float ymax = mVerticalBound;
final float x = mPosX;
final float y = mPosY;
if (x > xmax) {
mPosX = xmax;
} else if (x < -xmax) {
mPosX = -xmax;
}
if (y > ymax) {
mPosY = ymax;
} else if (y < -ymax) {
mPosY = -ymax;
}
}
} /*
* A particle system is just a collection of particles
*/
class ParticleSystem {
static final int NUM_PARTICLES = 15;
private Particle mBalls[] = new Particle[NUM_PARTICLES]; ParticleSystem() {
/*
* Initially our particles have no speed or acceleration
*/
for (int i = 0; i < mBalls.length; i++) {
mBalls[i] = new Particle();
}
} /*
* Update the position of each particle in the system using the
* Verlet integrator.
*/
private void updatePositions(float sx, float sy, long timestamp) {
final long t = timestamp;
if (mLastT != 0) {
final float dT = (float) (t - mLastT) * (1.0f / 1000000000.0f);
if (mLastDeltaT != 0) {
final float dTC = dT / mLastDeltaT;
final int count = mBalls.length;
for (int i = 0; i < count; i++) {
Particle ball = mBalls[i];
ball.computePhysics(sx, sy, dT, dTC);
}
}
mLastDeltaT = dT;
}
mLastT = t;
} /*
* Performs one iteration of the simulation. First updating the
* position of all the particles and resolving the constraints and
* collisions.
*/
public void update(float sx, float sy, long now) {
// update the system's positions
updatePositions(sx, sy, now); // We do no more than a limited number of iterations
final int NUM_MAX_ITERATIONS = 10; /*
* Resolve collisions, each particle is tested against every
* other particle for collision. If a collision is detected the
* particle is moved away using a virtual spring of infinite
* stiffness.
*/
boolean more = true;
final int count = mBalls.length;
for (int k = 0; k < NUM_MAX_ITERATIONS && more; k++) {
more = false;
for (int i = 0; i < count; i++) {
Particle curr = mBalls[i];
for (int j = i + 1; j < count; j++) {
Particle ball = mBalls[j];
float dx = ball.mPosX - curr.mPosX;
float dy = ball.mPosY - curr.mPosY;
float dd = dx * dx + dy * dy;
// Check for collisions
if (dd <= sBallDiameter2) {
/*
* add a little bit of entropy, after nothing is
* perfect in the universe.
*/
dx += ((float) Math.random() - 0.5f) * 0.0001f;
dy += ((float) Math.random() - 0.5f) * 0.0001f;
dd = dx * dx + dy * dy;
// simulate the spring
final float d = (float) Math.sqrt(dd);
final float c = (0.5f * (sBallDiameter - d)) / d;
curr.mPosX -= dx * c;
curr.mPosY -= dy * c;
ball.mPosX += dx * c;
ball.mPosY += dy * c;
more = true;
}
}
/*
* Finally make sure the particle doesn't intersects
* with the walls.
*/
curr.resolveCollisionWithBounds();
}
}
} public int getParticleCount() {
return mBalls.length;
} public float getPosX(int i) {
return mBalls[i].mPosX;
} public float getPosY(int i) {
return mBalls[i].mPosY;
}
} public void startSimulation() {
/*
* It is not necessary to get accelerometer events at a very high
* rate, by using a slower rate (SENSOR_DELAY_UI), we get an
* automatic low-pass filter, which "extracts" the gravity component
* of the acceleration. As an added benefit, we use less power and
* CPU resources.
*/
mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_UI);
} public void stopSimulation() {
mSensorManager.unregisterListener(this);
} public SimulationView(Context context) {
super(context);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); DisplayMetrics metrics = new DisplayMetrics();
getWindowManager().getDefaultDisplay().getMetrics(metrics);
mXDpi = metrics.xdpi;
mYDpi = metrics.ydpi;
mMetersToPixelsX = mXDpi / 0.0254f;
mMetersToPixelsY = mYDpi / 0.0254f; // rescale the ball so it's about 0.5 cm on screen
Bitmap ball = BitmapFactory.decodeResource(getResources(), R.drawable.ball);
final int dstWidth = (int) (sBallDiameter * mMetersToPixelsX + 0.5f);
final int dstHeight = (int) (sBallDiameter * mMetersToPixelsY + 0.5f);
mBitmap = Bitmap.createScaledBitmap(ball, dstWidth, dstHeight, true); Options opts = new Options();
opts.inDither = true;
opts.inPreferredConfig = Bitmap.Config.RGB_565;
mWood = BitmapFactory.decodeResource(getResources(), R.drawable.wood, opts);
} @Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
// compute the origin of the screen relative to the origin of
// the bitmap
mXOrigin = (w - mBitmap.getWidth()) * 0.5f;
mYOrigin = (h - mBitmap.getHeight()) * 0.5f;
mHorizontalBound = ((w / mMetersToPixelsX - sBallDiameter) * 0.5f);
mVerticalBound = ((h / mMetersToPixelsY - sBallDiameter) * 0.5f);
} @Override
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() != Sensor.TYPE_ACCELEROMETER)
return;
/*
* record the accelerometer data, the event's timestamp as well as
* the current time. The latter is needed so we can calculate the
* "present" time during rendering. In this application, we need to
* take into account how the screen is rotated with respect to the
* sensors (which always return data in a coordinate space aligned
* to with the screen in its native orientation).
*/ switch (mDisplay.getRotation()) {
case Surface.ROTATION_0:
mSensorX = event.values[0];
mSensorY = event.values[1];
break;
case Surface.ROTATION_90:
mSensorX = -event.values[1];
mSensorY = event.values[0];
break;
case Surface.ROTATION_180:
mSensorX = -event.values[0];
mSensorY = -event.values[1];
break;
case Surface.ROTATION_270:
mSensorX = event.values[1];
mSensorY = -event.values[0];
break;
} mSensorTimeStamp = event.timestamp;
mCpuTimeStamp = System.nanoTime();
} @Override
protected void onDraw(Canvas canvas) { /*
* draw the background
*/ canvas.drawBitmap(mWood, 0, 0, null); /*
* compute the new position of our object, based on accelerometer
* data and present time.
*/ final ParticleSystem particleSystem = mParticleSystem;
final long now = mSensorTimeStamp + (System.nanoTime() - mCpuTimeStamp);
final float sx = mSensorX;
final float sy = mSensorY; particleSystem.update(sx, sy, now); final float xc = mXOrigin;
final float yc = mYOrigin;
final float xs = mMetersToPixelsX;
final float ys = mMetersToPixelsY;
final Bitmap bitmap = mBitmap;
final int count = particleSystem.getParticleCount();
for (int i = 0; i < count; i++) {
/*
* We transform the canvas so that the coordinate system matches
* the sensors coordinate system with the origin in the center
* of the screen and the unit is the meter.
*/ final float x = xc + particleSystem.getPosX(i) * xs;
final float y = yc - particleSystem.getPosY(i) * ys;
canvas.drawBitmap(bitmap, x, y, null);
} // and make sure to redraw asap
invalidate();
} @Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
}

  

Android sample 之模拟重力感应,加速度的更多相关文章

  1. android小游戏模版—重力感应

               好久没更新博客了,今天来谈谈android小游戏---重力感应,一般在游戏里运用的比較多,比方这类游戏有:神庙逃亡.极品飞车,平衡球.三围重力迷宫,重力赛车等. 首先什么是重力感 ...

  2. Android重力感应开发

    http://blog.csdn.net/mad1989/article/details/20848181 一.手机中常用的传感器 在Android2.3 gingerbread系统中,google提 ...

  3. [转]Android重力感应开发

    http://blog.csdn.net/mad1989/article/details/20848181 一.手机中常用的传感器 在Android2.3 gingerbread系统中,google提 ...

  4. 【Android开发学习笔记】【第九课】重力感应

    概念 使用重力感应技术的Android游戏已经屡见不鲜,不知道自己以后会不会用到,所以先研究了一下. 在网上学习了一下,貌似没有api,所以得自己去分析手机处在怎样状态下.注意: 下面提供的demo程 ...

  5. Cocos2D-X2.2.3学习笔记9(处理重力感应事件,移植到Android加入两次返回退出游戏效果)

    这节我们来学习Cocos2d-x的最后一节.怎样处理重力感应事件.移植到Android后加入再按一次返回键退出游戏等.我这里用的Android.IOS不会也没设备呃 效果图不好弄,由于是要移植到真机上 ...

  6. android 利用重力感应监听 来电时翻转手机后静音。

       在CallNotifier.java中 加入如下代码: public void GetSensorManager(Context context) { sm = (SensorManager) ...

  7. Unity3D学习笔记——Android重力感应控制小球

    一:准备资源 两张贴图:地图和小球贴图. 二:导入资源 在Assets下建立resources文件夹,然后将贴图导入. 三:建立场景游戏对象 1.建立灯光: 2.创建一个相机,配置默认. 3.建立一个 ...

  8. iOS 重力感应 学习1 陀螺仪 水平仪 指南针

    小球可以随着重力感应 四处乱撞. 放大了坐标位移 就可以看见小球动了. 然后规定小球的路径 当滑到中间时候 弹出一张图片 作为提示. 我做了一个小demo 效果不错哦 CMMotionManager ...

  9. H5之重力感应篇

    手机的重力感应支持里,有两个主要的事件: 1. OrientationChange (在屏幕发生翻转的时候触发) 2. DeviceOrientation+DeviceMotion(重力感应与陀螺仪) ...

随机推荐

  1. 反引号backtick中输入多个命令

    如果在反引号backtick中输入多个命令会怎样?比如有如下脚本: #!/bin/bash var=`date;who` echo $var 运行该脚本,会发现输出的是命令date和who的集合,只是 ...

  2. HIBERNATE - 符合Java习惯的关系数据库持久化(精华篇)

    HIBERNATE - 符合Java习惯的关系数据库持久化      下一页 HIBERNATE - 符合Java习惯的关系数据库持久化 Hibernate参考文档 3.0.4   目录 前言 1. ...

  3. OSA-MAC: A MAC Protocol for Opportunistic Spectrum Access in Cognitive Radio Networks

    This full text paper was peer reviewed at the direction of IEEE Communications Society subject matte ...

  4. TF卡座(外焊、内焊、掀盖式、全塑、简易)

    TF卡座(外焊.内焊.掀盖 式.全塑.简易

  5. C51编译器的扩展关键字

    附表1-1 ANSIC标准关键字 附表1-2 C51编译器的扩展关键字

  6. rpm包制作

    ubuntu下先下载sudo apt-get install rpm就行了. 然后测试下rpm和rpmbuild命令都是存在的.好了,OK. rpm安装包的制作有严格的自定义的路径,这个路径是在/us ...

  7. OpenCV视屏跟踪

    #include <stdio.h> #include <iostream> #include "opencv2/imgproc/imgproc.hpp" ...

  8. pktgen使用详细教程

    网上有很多讲解pktgen的文章,但总是不够全面细致,看完之后自己还是不会写pktgen测试脚本,为此本文对pktgen进行详细的阐述,让大家看完本文后能够自己动手写pktgen shell. 1.p ...

  9. 几个简单的css设置问题:div居中,ul li不换行 ,内容超出自动变省略号等

    1  div在页面居中的问题 1)position值为relative时(相对定位),css设置属性margin:0 auto;(0 auto,表示上下边界为0,左右则根据宽度自适应相同值,即居中)即 ...

  10. hibernate Restrictions用法

    QBC常用限定方法 Restrictions.eq --> equal,等于. Restrictions.allEq --> 参数为Map对象,使用key/value进行多个等于的比对,相 ...