class SimulationView extends View implements SensorEventListener {
// diameter of the balls in meters
private static final float sBallDiameter = 0.004f;
private static final float sBallDiameter2 = sBallDiameter * sBallDiameter; // friction of the virtual table and air
private static final float sFriction = 0.1f; private Sensor mAccelerometer;
private long mLastT;
private float mLastDeltaT; private float mXDpi;
private float mYDpi;
private float mMetersToPixelsX;
private float mMetersToPixelsY;
private Bitmap mBitmap;
private Bitmap mWood;
private float mXOrigin;
private float mYOrigin;
private float mSensorX;
private float mSensorY;
private long mSensorTimeStamp;
private long mCpuTimeStamp;
private float mHorizontalBound;
private float mVerticalBound;
private final ParticleSystem mParticleSystem = new ParticleSystem(); /*
* Each of our particle holds its previous and current position, its
* acceleration. for added realism each particle has its own friction
* coefficient.
*/
class Particle {
private float mPosX;
private float mPosY;
private float mAccelX;
private float mAccelY;
private float mLastPosX;
private float mLastPosY;
private float mOneMinusFriction; Particle() {
// make each particle a bit different by randomizing its
// coefficient of friction
final float r = ((float) Math.random() - 0.5f) * 0.2f;
mOneMinusFriction = 1.0f - sFriction + r;
} public void computePhysics(float sx, float sy, float dT, float dTC) {
// Force of gravity applied to our virtual object
final float m = 1000.0f; // mass of our virtual object
final float gx = -sx * m;
final float gy = -sy * m; /*
* F = mA <=> A = F / m We could simplify the code by
* completely eliminating "m" (the mass) from all the equations,
* but it would hide the concepts from this sample code.
*/
final float invm = 1.0f / m;
final float ax = gx * invm;
final float ay = gy * invm; /*
* Time-corrected Verlet integration The position Verlet
* integrator is defined as x(t+dt) = x(t) + x(t) - x(t-dt) +
* a(t).t^2 However, the above equation doesn't handle variable
* dt very well, a time-corrected version is needed: x(t+dt) =
* x(t) + (x(t) - x(t-dt)) * (dt/dt_prev) + a(t).t^2 We also add
* a simple friction term (f) to the equation: x(t+dt) = x(t) +
* (1-f) * (x(t) - x(t-dt)) * (dt/dt_prev) + a(t)t^2
*/
final float dTdT = dT * dT;
final float x = mPosX + mOneMinusFriction * dTC * (mPosX - mLastPosX) + mAccelX
* dTdT;
final float y = mPosY + mOneMinusFriction * dTC * (mPosY - mLastPosY) + mAccelY
* dTdT;
mLastPosX = mPosX;
mLastPosY = mPosY;
mPosX = x;
mPosY = y;
mAccelX = ax;
mAccelY = ay;
} /*
* Resolving constraints and collisions with the Verlet integrator
* can be very simple, we simply need to move a colliding or
* constrained particle in such way that the constraint is
* satisfied.
*/
public void resolveCollisionWithBounds() {
final float xmax = mHorizontalBound;
final float ymax = mVerticalBound;
final float x = mPosX;
final float y = mPosY;
if (x > xmax) {
mPosX = xmax;
} else if (x < -xmax) {
mPosX = -xmax;
}
if (y > ymax) {
mPosY = ymax;
} else if (y < -ymax) {
mPosY = -ymax;
}
}
} /*
* A particle system is just a collection of particles
*/
class ParticleSystem {
static final int NUM_PARTICLES = 15;
private Particle mBalls[] = new Particle[NUM_PARTICLES]; ParticleSystem() {
/*
* Initially our particles have no speed or acceleration
*/
for (int i = 0; i < mBalls.length; i++) {
mBalls[i] = new Particle();
}
} /*
* Update the position of each particle in the system using the
* Verlet integrator.
*/
private void updatePositions(float sx, float sy, long timestamp) {
final long t = timestamp;
if (mLastT != 0) {
final float dT = (float) (t - mLastT) * (1.0f / 1000000000.0f);
if (mLastDeltaT != 0) {
final float dTC = dT / mLastDeltaT;
final int count = mBalls.length;
for (int i = 0; i < count; i++) {
Particle ball = mBalls[i];
ball.computePhysics(sx, sy, dT, dTC);
}
}
mLastDeltaT = dT;
}
mLastT = t;
} /*
* Performs one iteration of the simulation. First updating the
* position of all the particles and resolving the constraints and
* collisions.
*/
public void update(float sx, float sy, long now) {
// update the system's positions
updatePositions(sx, sy, now); // We do no more than a limited number of iterations
final int NUM_MAX_ITERATIONS = 10; /*
* Resolve collisions, each particle is tested against every
* other particle for collision. If a collision is detected the
* particle is moved away using a virtual spring of infinite
* stiffness.
*/
boolean more = true;
final int count = mBalls.length;
for (int k = 0; k < NUM_MAX_ITERATIONS && more; k++) {
more = false;
for (int i = 0; i < count; i++) {
Particle curr = mBalls[i];
for (int j = i + 1; j < count; j++) {
Particle ball = mBalls[j];
float dx = ball.mPosX - curr.mPosX;
float dy = ball.mPosY - curr.mPosY;
float dd = dx * dx + dy * dy;
// Check for collisions
if (dd <= sBallDiameter2) {
/*
* add a little bit of entropy, after nothing is
* perfect in the universe.
*/
dx += ((float) Math.random() - 0.5f) * 0.0001f;
dy += ((float) Math.random() - 0.5f) * 0.0001f;
dd = dx * dx + dy * dy;
// simulate the spring
final float d = (float) Math.sqrt(dd);
final float c = (0.5f * (sBallDiameter - d)) / d;
curr.mPosX -= dx * c;
curr.mPosY -= dy * c;
ball.mPosX += dx * c;
ball.mPosY += dy * c;
more = true;
}
}
/*
* Finally make sure the particle doesn't intersects
* with the walls.
*/
curr.resolveCollisionWithBounds();
}
}
} public int getParticleCount() {
return mBalls.length;
} public float getPosX(int i) {
return mBalls[i].mPosX;
} public float getPosY(int i) {
return mBalls[i].mPosY;
}
} public void startSimulation() {
/*
* It is not necessary to get accelerometer events at a very high
* rate, by using a slower rate (SENSOR_DELAY_UI), we get an
* automatic low-pass filter, which "extracts" the gravity component
* of the acceleration. As an added benefit, we use less power and
* CPU resources.
*/
mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_UI);
} public void stopSimulation() {
mSensorManager.unregisterListener(this);
} public SimulationView(Context context) {
super(context);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); DisplayMetrics metrics = new DisplayMetrics();
getWindowManager().getDefaultDisplay().getMetrics(metrics);
mXDpi = metrics.xdpi;
mYDpi = metrics.ydpi;
mMetersToPixelsX = mXDpi / 0.0254f;
mMetersToPixelsY = mYDpi / 0.0254f; // rescale the ball so it's about 0.5 cm on screen
Bitmap ball = BitmapFactory.decodeResource(getResources(), R.drawable.ball);
final int dstWidth = (int) (sBallDiameter * mMetersToPixelsX + 0.5f);
final int dstHeight = (int) (sBallDiameter * mMetersToPixelsY + 0.5f);
mBitmap = Bitmap.createScaledBitmap(ball, dstWidth, dstHeight, true); Options opts = new Options();
opts.inDither = true;
opts.inPreferredConfig = Bitmap.Config.RGB_565;
mWood = BitmapFactory.decodeResource(getResources(), R.drawable.wood, opts);
} @Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
// compute the origin of the screen relative to the origin of
// the bitmap
mXOrigin = (w - mBitmap.getWidth()) * 0.5f;
mYOrigin = (h - mBitmap.getHeight()) * 0.5f;
mHorizontalBound = ((w / mMetersToPixelsX - sBallDiameter) * 0.5f);
mVerticalBound = ((h / mMetersToPixelsY - sBallDiameter) * 0.5f);
} @Override
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() != Sensor.TYPE_ACCELEROMETER)
return;
/*
* record the accelerometer data, the event's timestamp as well as
* the current time. The latter is needed so we can calculate the
* "present" time during rendering. In this application, we need to
* take into account how the screen is rotated with respect to the
* sensors (which always return data in a coordinate space aligned
* to with the screen in its native orientation).
*/ switch (mDisplay.getRotation()) {
case Surface.ROTATION_0:
mSensorX = event.values[0];
mSensorY = event.values[1];
break;
case Surface.ROTATION_90:
mSensorX = -event.values[1];
mSensorY = event.values[0];
break;
case Surface.ROTATION_180:
mSensorX = -event.values[0];
mSensorY = -event.values[1];
break;
case Surface.ROTATION_270:
mSensorX = event.values[1];
mSensorY = -event.values[0];
break;
} mSensorTimeStamp = event.timestamp;
mCpuTimeStamp = System.nanoTime();
} @Override
protected void onDraw(Canvas canvas) { /*
* draw the background
*/ canvas.drawBitmap(mWood, 0, 0, null); /*
* compute the new position of our object, based on accelerometer
* data and present time.
*/ final ParticleSystem particleSystem = mParticleSystem;
final long now = mSensorTimeStamp + (System.nanoTime() - mCpuTimeStamp);
final float sx = mSensorX;
final float sy = mSensorY; particleSystem.update(sx, sy, now); final float xc = mXOrigin;
final float yc = mYOrigin;
final float xs = mMetersToPixelsX;
final float ys = mMetersToPixelsY;
final Bitmap bitmap = mBitmap;
final int count = particleSystem.getParticleCount();
for (int i = 0; i < count; i++) {
/*
* We transform the canvas so that the coordinate system matches
* the sensors coordinate system with the origin in the center
* of the screen and the unit is the meter.
*/ final float x = xc + particleSystem.getPosX(i) * xs;
final float y = yc - particleSystem.getPosY(i) * ys;
canvas.drawBitmap(bitmap, x, y, null);
} // and make sure to redraw asap
invalidate();
} @Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
}

  

Android sample 之模拟重力感应,加速度的更多相关文章

  1. android小游戏模版—重力感应

               好久没更新博客了,今天来谈谈android小游戏---重力感应,一般在游戏里运用的比較多,比方这类游戏有:神庙逃亡.极品飞车,平衡球.三围重力迷宫,重力赛车等. 首先什么是重力感 ...

  2. Android重力感应开发

    http://blog.csdn.net/mad1989/article/details/20848181 一.手机中常用的传感器 在Android2.3 gingerbread系统中,google提 ...

  3. [转]Android重力感应开发

    http://blog.csdn.net/mad1989/article/details/20848181 一.手机中常用的传感器 在Android2.3 gingerbread系统中,google提 ...

  4. 【Android开发学习笔记】【第九课】重力感应

    概念 使用重力感应技术的Android游戏已经屡见不鲜,不知道自己以后会不会用到,所以先研究了一下. 在网上学习了一下,貌似没有api,所以得自己去分析手机处在怎样状态下.注意: 下面提供的demo程 ...

  5. Cocos2D-X2.2.3学习笔记9(处理重力感应事件,移植到Android加入两次返回退出游戏效果)

    这节我们来学习Cocos2d-x的最后一节.怎样处理重力感应事件.移植到Android后加入再按一次返回键退出游戏等.我这里用的Android.IOS不会也没设备呃 效果图不好弄,由于是要移植到真机上 ...

  6. android 利用重力感应监听 来电时翻转手机后静音。

       在CallNotifier.java中 加入如下代码: public void GetSensorManager(Context context) { sm = (SensorManager) ...

  7. Unity3D学习笔记——Android重力感应控制小球

    一:准备资源 两张贴图:地图和小球贴图. 二:导入资源 在Assets下建立resources文件夹,然后将贴图导入. 三:建立场景游戏对象 1.建立灯光: 2.创建一个相机,配置默认. 3.建立一个 ...

  8. iOS 重力感应 学习1 陀螺仪 水平仪 指南针

    小球可以随着重力感应 四处乱撞. 放大了坐标位移 就可以看见小球动了. 然后规定小球的路径 当滑到中间时候 弹出一张图片 作为提示. 我做了一个小demo 效果不错哦 CMMotionManager ...

  9. H5之重力感应篇

    手机的重力感应支持里,有两个主要的事件: 1. OrientationChange (在屏幕发生翻转的时候触发) 2. DeviceOrientation+DeviceMotion(重力感应与陀螺仪) ...

随机推荐

  1. (原)opencv中使用限制对比度自适应直方图均衡CLAHE

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5462656.html Ptr<CLAHE> clahe = createCLAHE(); ...

  2. sql中NULL的问题

    sql中NULL的问题   今天一不小心在sql中写出以下脚本 select defaultPositionId from TableName where UserId=1100528 and def ...

  3. MVC WEB api 自动生成文档

    最近在一直在用webapi做接口给移动端用.但是让我纠结的时候每次新加接口或者改动接口的时候,就需要重新修改文档这让我很是苦恼.无意中发现.webapi居然有自动生成文档的功能....真是看见了救星啊 ...

  4. IIS6.0架构概览(翻译)

    IIS6.0提供一个重新设计的万维网发布服务(World Wide Web Publishing Service)架构,可以帮助你为你的网站构建更好的性能.可靠.可扩展性(scalability),无 ...

  5. RenderPartial RenderAction Partial Action

    MVC Razor中有不同的展现partial view的方法,许多开发人员子在选择使用 RenderPartial or RenderAction or Partial or Action help ...

  6. 在 .NET Framework 2.0上使用LINQ

    附件:System.Linq.dll.7z 此为从System.Core.dll中剥离的Linq,含有System.Linq.Enumerable类所有扩展方法,可以在客户只安装了.Net 2.0的环 ...

  7. C语言超级经典400道题目

    C语言超级经典400道题目 1.C语言程序的基本单位是____ A) 程序行 B) 语句 C) 函数 D) 字符.C.1 2.C语言程序的三种基本结构是____构A.顺序结构,选择结构,循环结 B.递 ...

  8. 简单的QT绘图程序(把全部的点都记录下来,然后在paintEvent里使用drawLine函数进行绘制,貌似效率很低。。。)

    当初在学MFC时,最经典的入门实例就是绘图程序,其作用相当于Console Application 下的Hello World了吧. 如今入手QT,不免怀旧,于是也写了一个绘图程序,虽然简单,却也是入 ...

  9. T-SQL 语法元素

    一.标识符 在T-SQL语言中,对SQLServer数据库及其数据对象(比如表.索引.视图.存储过程.触发器等)需要以名称来进行命名并加以区分,这些名称就称为标识符. 通常情况下,SQLServer数 ...

  10. 【Xamarin挖墙脚系列:关闭 OS X El Capitan 中 SIP 安全设置功能】

    比如需要修改内核配置文件: com.apple.Boot.plist 那么我们需要解锁权限. 禁止SIP模式,那么就可以修改此文件了. 在 OS X El Capitan 中有一个跟安全相关的模式叫 ...