LIS(最长递增子序列)和LCS(最长公共子序列)的总结

最长公共子序列(LCS):O(n^2)

两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2)

s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1;

s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]);

初始化:dp[i][0] = dp[0][j] = 0;

伪代码:
    dp[maxn1][maxn2];
s1[maxn1],s2[maxn2];
p[maxn1][maxn2][2];
//init
for i in range(0, len1):
dp[i][0] = 0;
else:;
for i in range(0, len2):
dp[0][i] = 0;
else:; for i in range(1, len1):
for j in range(1, len2):
if s1[i] == s2[j]:
dp[i][j] = dp[i - 1][j - 1] + 1;
p[i][j][0] = i - 1;
p[i][j][1] = j - 1;
else:
if dp[i - 1][j] > dp[i][j - 1]:
dp[i][j] = dp[i - 1][j];
p[i][j][0] = i - 1;
p[i][j][1] = j;
else:
dp[i][j] = dp[i][j - 1];
p[i][j][0] = i;
p[i][j][1] = j - 1;
else:;
else:;
return dp[len1][len2];
//path 非递归
function print_path(len1, len2):
if (dp[len1][len2] == 0)
return;
printf_path(p[len1][len2][0], p[len1][len2][1]);
if s1[len1] == s2[len2]:
printf:s1[len1];
end function;

题目:UVA - 531Compromise
UVA - 10066The Twin Towers UVA - 10192Vacation

uva10405 - Longest Common Subsequence

最长递增子序列(LIS):O(n^2)

从左到右的求前i长度的序列的最长递增子序列的长度,状态转移方程:

dp[i] = Max(dp[j] + 1);i in range(1, len); j in range(1, i - 1);

伪代码
    s[maxn],dp[maxn];

    for i in range(1, len):
dp[i] = 1; int maxlen = 1;
for i in range(2, len):
for j range(1, i - 1):
if s[i] > s[j]:
dp[i] = Max(dp[i], dp[j] + 1);
else:
maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
//path递归
function print_path(maxlen):
if maxlen == 0:return; for i in range(1, len):
if dp[i] == maxlen:
print_path(maxlen - 1);
printf:s[i];
end function;

题目:UVA - 10599Robots(II)

最长递增子序列O(n * logn)

还是从左往右的求前i长度的序列的最长递增子序列长度,可是再确定dp[j]最大值的时候还要用一层循环来查找。这样比較低效.假设把前面的i长度序列出现的最长递增子序列储存起来,那么查找的时候用二分就能够做到O(logn)的复杂度。

用一个LIS数组来储蓄前i序列的最长递增子序列,查找第i个数字的时候,假设num[i] > LIS[top], 那么LIS[++top] = num[i]; dp[i] = top;假设num[i] == LIS[top],那么dp[i] = top; 假设num[i] < LIS[top], 那么二分查找到某个等于或者大于num[i]的最接近的值的位置(第k个),dp[i] = k - 1; LIS[k] = num[i];

题目:UVA - 10534Wavio Sequence

伪代码
    dp[maxn], LIS[maxn], s[maxn];
top = 0;
LIS[top++] = s[1]; int maxlen = 1;
for i in range(2, len):
if s[i] > LIS[top]:
LIS[++top] = s[i];
dp[i] = top + 1;
else if s[i] == LIS[top]:
dp[i] = top + 1;
else:
k = lower_bound(LIS.begin(), LIS.end(), s[i]) - LIS.beign();
LIS[k] = s[i];
dp[i] = k + 1; maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
最长公共子序列O(n * logn)

要求串本身不会出现同样的数字或是字母。通过对第一个字符串进行映射(递增的顺序)。然后第二个字符串按照上面的第一个字符串等价映射,这样就把问题从LCS转化成LIS。比如:

串1: 2 4 3 5 6

映射:1 2 3 4 5

串2: 3 2 6 8 10

等价映射:3 1 5 0 0

题目:uva10635Prince and Princess

版权声明:本文博客原创文章,博客,未经同意,不得转载。

LIS(最长的序列)和LCS(最长公共子)总结的更多相关文章

  1. [LeetCode] Binary Tree Longest Consecutive Sequence II 二叉树最长连续序列之二

    Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree. Especia ...

  2. 最长上升序列 LCS LIS

    子序列问题 (一)一个序列中的最长上升子序列(LISLIS) n2做法 直接dp即可: ;i<=n;i++) { dp[i]=;//初始化 ;j<i;j++)//枚举i之前的每一个j ) ...

  3. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  4. (LIS)最长上升序列(DP+二分优化)

    求一个数列的最长上升序列 动态规划法:O(n^2) //DP int LIS(int a[], int n) { int DP[n]; int Cnt=-1; memset(DP, 0, sizeof ...

  5. XHXJ's LIS HDU - 4352 最长递增序列&数位dp

    代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...

  6. HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列

    题意:给定一个长度为N的序列,现在要求给出一个最长的序列满足序列中的元素严格上升并且相邻两个数字的下标间隔要严格大于d. 分析: 1.线段树 由于给定的元素的取值范围为0-10^5,因此维护一棵线段树 ...

  7. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  8. LCS最长公共子序列

    问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...

  9. POJ 2250(LCS最长公共子序列)

    compromise Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

随机推荐

  1. 基于visual Studio2013解决C语言竞赛题之1045打印成绩

       题目 解决代码及点评 /* 功能:用记录来描述一个学生的成绩情况,内容包括:姓名.学号.数学成绩和PASCAL成绩. 要求对一个小组的10个学生的成绩进行统计处理: 1)计算学生的总 ...

  2. cocos2d-x 制作资源下载页面

    开发游戏中用到从http 服务器下载文件的操作,所以要有个界面显示下载进度,同时联网采用curl库,因为下载是同步的操作,所以用了多线程 啥也不说,直接贴代码.我是采用ccbi做的页面,你也可以做一个 ...

  3. C++汉字转拼音(转)

    #include<iostream> #include<string> using namespace std; string findLetter(int nCode); s ...

  4. Android实时获取音量(单位:分贝)

    基础知识 度量声音强度,大家最熟悉的单位就是分贝(decibel,缩写为dB).这是一个无纲量的相对单位,计算公式如下: 分子是测量值的声压,分母是参考值的声压(20微帕,人类所能听到的最小声压).因 ...

  5. LINQ to SQL的一些简单用法

    static void Main(string[] args) { var personList = new List<Person> { new Person() { PersonID= ...

  6. 1数组的join方法

    function log(e) { console.log(e) } 有时候写console.log太长了,所以会自己写个这样的函数省去写console的步骤. 数组的join方法可以把一个数组按照j ...

  7. 调用函数的ALV、面向对象的ALV设置带选择列

    这个就是通过对应的选择列,实现对ALV数据的选择,在调用函数的ALV和面向对象的ALV实现方法存在差异,下面讲两者的方法:1)调用函数的ALV.   通过 SLIS_LAYOUT_ALV-BOX_FI ...

  8. 【ASP.NET Web API教程】2.1 创建支持CRUD操作的Web API

    原文 [ASP.NET Web API教程]2.1 创建支持CRUD操作的Web API 2.1 Creating a Web API that Supports CRUD Operations2.1 ...

  9. SpringMVC之Controller传递JSON数据到页面

    在Controller中,组装好JSON格式的数据,然后输入到页面,或者通过ajax请求在页面进行解析,都可以做到. 1.Controller /** * JSON DATA TO PAGE VEIW ...

  10. 轻应用 lapp

    轻应用 LAPP (Light App) 即轻应用是一种无需下载.即搜即用的全功能 App,既有媲美甚至超越native app的用户体验,又具备webapp的可被检索与智能分发的特性,将有效解决优质 ...