LIS(最长的序列)和LCS(最长公共子)总结
LIS(最长递增子序列)和LCS(最长公共子序列)的总结
最长公共子序列(LCS):O(n^2)
两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2)
s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1;
s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]);
初始化:dp[i][0] = dp[0][j] = 0;
伪代码:
dp[maxn1][maxn2];
s1[maxn1],s2[maxn2];
p[maxn1][maxn2][2];
//init
for i in range(0, len1):
dp[i][0] = 0;
else:;
for i in range(0, len2):
dp[0][i] = 0;
else:;
for i in range(1, len1):
for j in range(1, len2):
if s1[i] == s2[j]:
dp[i][j] = dp[i - 1][j - 1] + 1;
p[i][j][0] = i - 1;
p[i][j][1] = j - 1;
else:
if dp[i - 1][j] > dp[i][j - 1]:
dp[i][j] = dp[i - 1][j];
p[i][j][0] = i - 1;
p[i][j][1] = j;
else:
dp[i][j] = dp[i][j - 1];
p[i][j][0] = i;
p[i][j][1] = j - 1;
else:;
else:;
return dp[len1][len2];
//path 非递归
function print_path(len1, len2):
if (dp[len1][len2] == 0)
return;
printf_path(p[len1][len2][0], p[len1][len2][1]);
if s1[len1] == s2[len2]:
printf:s1[len1];
end function;
题目:UVA - 531Compromise
UVA - 10066The Twin Towers UVA - 10192Vacation
uva10405 - Longest Common Subsequence
最长递增子序列(LIS):O(n^2)
从左到右的求前i长度的序列的最长递增子序列的长度,状态转移方程:
dp[i] = Max(dp[j] + 1);i in range(1, len); j in range(1, i - 1);
伪代码
s[maxn],dp[maxn];
for i in range(1, len):
dp[i] = 1;
int maxlen = 1;
for i in range(2, len):
for j range(1, i - 1):
if s[i] > s[j]:
dp[i] = Max(dp[i], dp[j] + 1);
else:
maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
//path递归
function print_path(maxlen):
if maxlen == 0:return;
for i in range(1, len):
if dp[i] == maxlen:
print_path(maxlen - 1);
printf:s[i];
end function;
最长递增子序列O(n * logn)
还是从左往右的求前i长度的序列的最长递增子序列长度,可是再确定dp[j]最大值的时候还要用一层循环来查找。这样比較低效.假设把前面的i长度序列出现的最长递增子序列储存起来,那么查找的时候用二分就能够做到O(logn)的复杂度。
用一个LIS数组来储蓄前i序列的最长递增子序列,查找第i个数字的时候,假设num[i] > LIS[top], 那么LIS[++top] = num[i]; dp[i] = top;假设num[i] == LIS[top],那么dp[i] = top; 假设num[i] < LIS[top], 那么二分查找到某个等于或者大于num[i]的最接近的值的位置(第k个),dp[i] = k - 1; LIS[k] = num[i];
伪代码
dp[maxn], LIS[maxn], s[maxn];
top = 0;
LIS[top++] = s[1];
int maxlen = 1;
for i in range(2, len):
if s[i] > LIS[top]:
LIS[++top] = s[i];
dp[i] = top + 1;
else if s[i] == LIS[top]:
dp[i] = top + 1;
else:
k = lower_bound(LIS.begin(), LIS.end(), s[i]) - LIS.beign();
LIS[k] = s[i];
dp[i] = k + 1;
maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
最长公共子序列O(n * logn)
要求串本身不会出现同样的数字或是字母。通过对第一个字符串进行映射(递增的顺序)。然后第二个字符串按照上面的第一个字符串等价映射,这样就把问题从LCS转化成LIS。比如:
串1: 2 4 3 5 6
映射:1 2 3 4 5
串2: 3 2 6 8 10
等价映射:3 1 5 0 0
题目:uva10635Prince and Princess
版权声明:本文博客原创文章,博客,未经同意,不得转载。
LIS(最长的序列)和LCS(最长公共子)总结的更多相关文章
- [LeetCode] Binary Tree Longest Consecutive Sequence II 二叉树最长连续序列之二
Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree. Especia ...
- 最长上升序列 LCS LIS
子序列问题 (一)一个序列中的最长上升子序列(LISLIS) n2做法 直接dp即可: ;i<=n;i++) { dp[i]=;//初始化 ;j<i;j++)//枚举i之前的每一个j ) ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- (LIS)最长上升序列(DP+二分优化)
求一个数列的最长上升序列 动态规划法:O(n^2) //DP int LIS(int a[], int n) { int DP[n]; int Cnt=-1; memset(DP, 0, sizeof ...
- XHXJ's LIS HDU - 4352 最长递增序列&数位dp
代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...
- HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列
题意:给定一个长度为N的序列,现在要求给出一个最长的序列满足序列中的元素严格上升并且相邻两个数字的下标间隔要严格大于d. 分析: 1.线段树 由于给定的元素的取值范围为0-10^5,因此维护一棵线段树 ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列
问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
随机推荐
- Android UI 之WaterFall瀑布流效果
所谓瀑布流效果,简单说就是宽度相同但是高度不同的一大堆图片,分成几列,然后像水流一样向下排列,并随着用户的上下滑动自动加载更多的图片内容. 语言描述比较抽象,具体效果看下面的截图: ...
- 单击Android设备后退键,主屏幕键以及旋转屏幕如何影响Activity的生命周期
单击设备的后退键,相当于通知Android系统“我已完成activity的使用,现在不需要它了.”接到指令后,系统立即销毁了activity.即调用onPause()->onStop()-> ...
- [每日一题] OCP1z0-047 :2013-08-29 NULL............................................................168
转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/10558305 正确答案:B 用函数可以针对各种数据类型时行操作,包括NULL值在内.其中有 ...
- POJ3436 ACM Computer Factory 【最大流】
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5412 Accepted: 1 ...
- 每日一帖示例程序(使用TWebBrowser基于HTML做)
最近在程序中增加了每日一帖的功能,搜索一下网站的程序,发现大部分是用Memo实现,而我用的是TWebBrowser基于HTML做,故帖出来共享一下. PAS源码: unit Unit1; interf ...
- express for node 路由route几种实现方式的思考
1.路由实现方式和顺序 express框架创建的模板app,js中默认代码 var express = require('express'); var routes = require('./rout ...
- mysql基础:列类型--整型
mysql列类型--字符串 http://blog.csdn.net/jk110333/article/details/9342301 mysql列类型--时间和日期 http://blog. ...
- KDB支持单步调试功能(ARM架构)
0 实践发现KDB不支持step调试功能 (本文针对的是arm CotexA9架构,各种架构的实现方式不一样, X86的好像已经支持,不过本人没有验证过) 1 首先看下要调试的代码段 ...
- OpenVPN多处理之-netns容器与iptables CLUSTER
假设还是沉湎于之前的战果以及强加的感叹,不要冥想,将其升华. 1.C还是脚本 以前,我用bash组织了复杂的iptables,ip rule等逻辑来配合OpenVPN,将其应用于差点儿全部能够想象得到 ...
- 四个机器学习一步一步入门约束波尔兹曼机RBM