An easy problem

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1697    Accepted Submission(s): 760

Problem Description

One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
 

Input

The first line is an integer T(1≤T≤10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

It's guaranteed that in type 2 operation, there won't be two same n.

 

Output

For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
 

Sample Input

1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
 

Sample Output

Case #1:
2
1
2
20
10
1
6
42
504
84
 

Source

 
既然说是简单题,那就不用想的太复杂,暴力的做法也能过
 //2016.9.12
#include <iostream>
#include <cstdio>
#include <cstring>
#define N 100005 using namespace std; int nu[N], book[N]; int main()
{
long long ans;
int T, kase = , q, mod, op;
scanf("%d", &T);
while(T--)
{
ans = ;
memset(book, true, sizeof(book));
printf("Case #%d:\n", ++kase);
scanf("%d%d", &q, &mod);
for(int i = ; i <= q; i++)
{
scanf("%d%d", &op, &nu[i]);
if(op == )
{
ans *= nu[i];
ans %= mod;
}
else
{
book[nu[i]] = false;
book[i] = false;
ans = ;
for(int j = ; j < i; j++)
{
if(book[j])ans = (ans*nu[j])%mod;
}
}
printf("%lld\n", ans);
}
} return ;
}

HDU5475的更多相关文章

  1. hdu-5475 An easy problem---线段树+取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5475 题目大意: 给X赋初值1,然后给Q个操作,每个操作对应一个整数M: 如果操作是1则将X乘以对应 ...

  2. HDU5475(线段树)

    An easy problem Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)

    Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...

  4. hdu5475(线段树单点修改,统计区间乘积)

    题目意思: 给定a*b*c*d*e*f*....,可以在某一步去掉前面的一个因子,每次回答乘积. #include <cstdio> #include <cstring> #i ...

随机推荐

  1. PAT (Advanced Level) 1016. Phone Bills (25)

    简单模拟题. #include<iostream> #include<cstring> #include<cmath> #include<algorithm& ...

  2. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  3. nginx keepalived 主从切换

    注:  LVS + Keepalived  不知道为什么出现一个很郁闷的问题....... ------------------------------------------------------ ...

  4. log4CXX第二篇---配置文件(properties文件)详解

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  5. ZOJ 3935 2016

    简单规律题...没看懂题目直接从输出中找到了规律. 先不管是不是闰年,前后两项的差值会形成一个等差数列,公差是64... 输出的时候再判一下闰年即可. #include<cstdio> # ...

  6. cocopods安装与使用

    转自http://www.cnblogs.com/jys509/p/4839803.html Cocoapods安装步骤 1.升级Ruby环境 sudo gem update --system 如果R ...

  7. 在阿里云ECS(CentOS6.5)上安装tomcat

    切换到你要安装的目录下 命令: cd /home/ 下载你要安装的tomcat 命令: wget http://mirror.bit.edu.cn/apache/tomcat/tomcat-7/v7. ...

  8. angular中的$http配置和参数

    依赖:$httpBackend $cacheFactory $rootScope $q $injector 使用:$http(config); 参数: method:字符串,请求方法. url:字符串 ...

  9. PHP实反向代理-收藏

    需求 现在有些后辍的域名不支持备案,这个时候需要用免备案主机或空间做个反向代理,这样可实现内容存放在国内主机统一管理 实现 用 php-dynamic-mirror 可实现,并在头部进行域名转换,可实 ...

  10. Memcached源码分析之memcached.c

    memcached.c 由于代码太多,在此省略了部分代码,例如UPD连接,二进制协议,某些错误输出和调试输出等,建议从main函数开始看起. #include "memcached.h&qu ...