Like the old Albert Einstein said:

If you can't explain it to a six-year-old, you really don't understand it yourself.

Well, I tried to explain JavaScript closures to a 27-year-old friend and completely failed.

How would you explain it to someone with a knowledge of the concepts which make up closures (for example, functions, variables and the like), but does not understand closures themselves?

I have seen the Scheme example given on Stack Overflow, and it did not help.

 
344  
Closures are a difficult concept to come to grips with on the first try. That's why SO is the perfect way to get this information in a coherent, straightforward series of well written explanations all from different perspectives. Ie; Send the 6-year old here to find the explanation that they understand. – Jess Telford May 3 '12 at 1:35
17  
The title question "How do JavaScript closures work?" could be considered a much more complex question than what we find in the description, which is asking how you would explain (how to use) closures to a 6-year old. Maybe this explains why many of the answers are not really very simple, but nor are they complete or accurate. – dlaliberte Aug 13 '12 at 17:11
42  
Practical explanation of closures - jondavidjohn.com/blog/2011/09/… – jondavidjohn Sep 26 '12 at 16:31
158  
My problem with these and many answers is that they approach it from an abstract, theoretical perspective, rather than starting with explaining simply why closures are necessary in Javascript and the practical situations in which you use them. You end up with a tl;dr article that you have to slog through, all the time thinking, "but, why?". I would simply start with: closures are a neat way of dealing with the following two realities of JavaScript: a. scope is at the function level, not the block level and, b. much of what you do in practice in JavaScript is asynchronous/event driven. – Jeremy Burton Mar 8 '13 at 17:22 
13  
@Redsandro For one, it makes event-driven code a lot easier to write. I might fire a function when the page loads to determine specifics about the HTML or available features. I can define and set a handler in that function and have all that context info available every time the handler is called without having to re-query it. Solve the problem once, re-use on every page where that handler is needed with reduced overhead on handler re-invocation. You ever see the same data get re-mapped twice in a language that doesn't have them? Closures make it a lot easier to avoid that sort of thing. – Erik Reppen Jun 26 '13 at 17:02 

74 Answers

up vote2037down voteaccepted

JavaScript Closures for Dummies

Submitted by Morris on Tue, 2006-02-21 10:19. Community-edited since.

Closures Are Not Magic

This page explains closures so that a programmer can understand them — using working JavaScript code. It is not for gurus or functional programmers.

Closures are not hard to understand once the core concept is grokked. However, they are impossible to understand by reading any academic papers or academically oriented information about them!

This article is intended for programmers with some programming experience in a mainstream language, and who can read the following JavaScript function:

function sayHello(name) {
var text = 'Hello ' + name;
var sayAlert = function() { alert(text); }
sayAlert();
}

An Example of a Closure

Two one sentence summaries:

  • a closure is the local variables for a function — kept alive after the function has returned, or
  • a closure is a stack-frame which is not deallocated when the function returns (as if a 'stack-frame' were malloc'ed instead of being on the stack!).

The following code returns a reference to a function:

function sayHello2(name) {
var text = 'Hello ' + name; // Local variable
var sayAlert = function() { alert(text); }
return sayAlert;
}
var say2 = sayHello2('Bob');
say2(); // alerts "Hello Bob"

Most JavaScript programmers will understand how a reference to a function is returned to a variable (say2) in the above code. If you don't, then you need to before you can learn closures. A C programmer would think of the function as returning a pointer to a function, and that the variables sayAlert and say2 were each a pointer to a function.

There is a critical difference between a C pointer to a function and a JavaScript reference to a function. In JavaScript, you can think of a function reference variable as having both a pointer to a function as well as a hidden pointer to a closure.

The above code has a closure because the anonymous function function() { alert(text); } is declared inside another function, sayHello2() in this example. In JavaScript, if you use the functionkeyword inside another function, you are creating a closure.

In C, and most other common languages after a function returns, all the local variables are no longer accessible because the stack-frame is destroyed.

In JavaScript, if you declare a function within another function, then the local variables can remain accessible after returning from the function you called. This is demonstrated above, because we call the function say2() after we have returned from sayHello2(). Notice that the code that we call references the variable text, which was a local variable of the function sayHello2().

function() { alert(text); } // Output of say2.toString();

Looking at the output of say2.toString(), we can see that the code refers to the variable text. The anonymous function can reference text which holds the value 'Hello Bob' because the local variables of sayHello2() are kept in a closure.

The magic is that in JavaScript a function reference also has a secret reference to the closure it was created in — similar to how delegates are a method pointer plus a secret reference to an object.

More examples

For some reason, closures seem really hard to understand when you read about them, but when you see some examples you can click to how they work (it took me a while). I recommend working through the examples carefully until you understand how they work. If you start using closures without fully understanding how they work, you would soon create some very weird bugs!

Example 3

This example shows that the local variables are not copied — they are kept by reference. It is kind of like keeping a stack-frame in memory when the outer function exits!

function say667() {
// Local variable that ends up within closure
var num = 666;
var sayAlert = function() { alert(num); }
num++;
return sayAlert;
}
var sayNumber = say667();
sayNumber(); // alerts 667

Example 4

All three global functions have a common reference to the same closure because they are all declared within a single call to setupSomeGlobals().

function setupSomeGlobals() {
// Local variable that ends up within closure
var num = 666;
// Store some references to functions as global variables
gAlertNumber = function() { alert(num); }
gIncreaseNumber = function() { num++; }
gSetNumber = function(x) { num = x; }
} setupSomeGlobals();
gIncreaseNumber();
gAlertNumber(); // 667
gSetNumber(5);
gAlertNumber(); // 5 var oldAlert = gAlertNumber; setupSomeGlobals();
gAlertNumber(); // 666 oldAlert() // 5

The three functions have shared access to the same closure — the local variables of setupSomeGlobals() when the three functions were defined.

Note that in the above example, if you call setupSomeGlobals() again, then a new closure (stack-frame!) is created. The old gAlertNumbergIncreaseNumbergSetNumber variables are overwritten with new functions that have the new closure. (In JavaScript, whenever you declare a function inside another function, the inside function(s) is/are recreated again each time the outside function is called.)

Example 5

This one is a real gotcha for many people, so you need to understand it. Be very careful if you are defining a function within a loop: the local variables from the closure do not act as you might first think.

function buildList(list) {
var result = [];
for (var i = 0; i < list.length; i++) {
var item = 'item' + i;
result.push( function() {alert(item + ' ' + list[i])} );
}
return result;
} function testList() {
var fnlist = buildList([1,2,3]);
// Using j only to help prevent confusion -- could use i.
for (var j = 0; j < fnlist.length; j++) {
fnlist[j]();
}
}

The line result.push( function() {alert(item + ' ' + list[i])} adds a reference to an anonymous function three times to the result array. If you are not so familiar with anonymous functions think of it like:

pointer = function() {alert(item + ' ' + list[i])};
result.push(pointer);

Note that when you run the example, "item2 undefined" is alerted three times! This is because just like previous examples, there is only one closure for the local variables for buildList. When the anonymous functions are called on the line fnlist[j](); they all use the same single closure, and they use the current value for i and item within that one closure (where i has a value of 3because the loop had completed, and item has a value of 'item2'). Note we are indexing from 0 hence item has a value of item2. And the i++ will increment i to the value 3.

Example 6

This example shows that the closure contains any local variables that were declared inside the outer function before it exited. Note that the variable alice is actually declared after the anonymous function. The anonymous function is declared first; and when that function is called it can access the alice variable because alice is in the same scope (JavaScript does variable hoisting). Also sayAlice()() just directly calls the function reference returned from sayAlice() — it is exactly the same as what was done previously, but without the temporary variable.

function sayAlice() {
var sayAlert = function() { alert(alice); }
// Local variable that ends up within closure
var alice = 'Hello Alice';
return sayAlert;
}
sayAlice()();

Tricky: note also that the sayAlert variable is also inside the closure, and could be accessed by any other function that might be declared within sayAlice(), or it could be accessed recursively within the inside function.

Example 7

This final example shows that each call creates a separate closure for the local variables. There is nota single closure per function declaration. There is a closure for each call to a function.

function newClosure(someNum, someRef) {
// Local variables that end up within closure
var num = someNum;
var anArray = [1,2,3];
var ref = someRef;
return function(x) {
num += x;
anArray.push(num);
alert('num: ' + num +
'\nanArray ' + anArray.toString() +
'\nref.someVar ' + ref.someVar);
}
}
obj = {someVar: 4};
fn1 = newClosure(4, obj);
fn2 = newClosure(5, obj);
fn1(1); // num: 5; anArray: 1,2,3,5; ref.someVar: 4;
fn2(1); // num: 6; anArray: 1,2,3,6; ref.someVar: 4;
obj.someVar++;
fn1(2); // num: 7; anArray: 1,2,3,5,7; ref.someVar: 5;
fn2(2); // num: 8; anArray: 1,2,3,6,8; ref.someVar: 5;

Summary

If everything seems completely unclear then the best thing to do is to play with the examples. Reading an explanation is much harder than understanding examples. My explanations of closures and stack-frames, etc. are not technically correct — they are gross simplifications intended to help understanding. Once the basic idea is grokked, you can pick up the details later.

Final points:

  • Whenever you use function inside another function, a closure is used.
  • Whenever you use eval() inside a function, a closure is used. The text you eval can reference local variables of the function, and within eval you can even create new local variables by using eval('var foo = …')
  • When you use new Function(…) (the Function constructor) inside a function, it does not create a closure. (The new function cannot reference the local variables of the outer function.)
  • A closure in JavaScript is like keeping a copy of all the local variables, just as they were when a function exited.
  • It is probably best to think that a closure is always created just on entry to a function, and the local variables are added to that closure.
  • A new set of local variables is kept every time a function with a closure is called (given that the function contains a function declaration inside it, and a reference to that inside function is either returned or an external reference is kept for it in some way).
  • Two functions might look like they have the same source text, but have completely different behaviour because of their 'hidden' closure. I don't think JavaScript code can actually find out if a function reference has a closure or not.
  • If you are trying to do any dynamic source code modifications (for example: myFunction = Function(myFunction.toString().replace(/Hello/,'Hola'));), it won't work if myFunction is a closure (of course, you would never even think of doing source code string substitution at runtime, but...).
  • It is possible to get function declarations within function declarations within functions — and you can get closures at more than one level.
  • I think normally a closure is the term for both the function along with the variables that are captured. Note that I do not use that definition in this article!
  • I suspect that closures in JavaScript differ from those normally found in functional languages.

Links

Thanks

If you have just learnt closures (here or elsewhere!), then I am interested in any feedback from you about any changes you might suggest that could make this article clearer. Send an email to morrisjohns.com (morris_closure @). Please note that I am not a guru on JavaScript — nor on closures.

How do JavaScript closures work?的更多相关文章

  1. JavaScript——closures(待续)

    问答原文:How do JavaScript closures work?

  2. JavaScript Closures 闭包

    在一些编程语言中, 当我们执行完成function中的局部代码仅在函数执行期间可运行. 但是JS 事不一样的 闭包总结来说, 就是innerFunction 总是有使用outer function 的 ...

  3. 深入理解JavaScript系列(16):闭包(Closures)

    介绍 本章我们将介绍在JavaScript里大家经常来讨论的话题 —— 闭包(closure).闭包其实大家都已经谈烂了.尽管如此,这里还是要试着从理论角度来讨论下闭包,看看ECMAScript中的闭 ...

  4. JavaScript:内存泄露、性能调优

    1.在进行JS内存泄露检查之前,先要了解JS的内存管理: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Manageme ...

  5. JavaScript之闭包

    JavaScript之闭包 在JavaScript中,闭包恐怕是很多人不能理解的一个概念了,甚至很多人也会把闭包和匿名函数混淆. 闭包是有权访问另一个函数作用域中的变量的函数.首先要明白的就是,闭包是 ...

  6. 理解和使用 JavaScript 中的回调函数

    理解和使用 JavaScript 中的回调函数 标签: 回调函数指针js 2014-11-25 01:20 11506人阅读 评论(4) 收藏 举报  分类: JavaScript(4)    目录( ...

  7. [译]JavaScript规范-葵花宝典

    [译]JavaScript规范 译自:https://github.com/airbnb/javascript 类型 原始值: 相当于传值 string number boolean null und ...

  8. JavaScript闭包的底层运行机制

    转自:http://blog.leapoahead.com/2015/09/15/js-closure/ 我研究JavaScript闭包(closure)已经有一段时间了.我之前只是学会了如何使用它们 ...

  9. 什么是JavaScript闭包终极全解之一——基础概念

    本文转自:http://www.cnblogs.com/richaaaard/p/4755021.html 什么是JavaScript闭包终极全解之一——基础概念 “闭包是JavaScript的一大谜 ...

随机推荐

  1. 《JS权威指南学习总结--4.13运算符》

    一.typeof运算符     typeof是一元运算符,放在其单个操作数的前面,操作数可以是任意类型.返回值为表示操作数类型的一个字符串.     例如:     typeof x          ...

  2. Eclipse/MyEclipse中使用复制粘贴功能卡的解决办法

    最近在MyEclipse中编辑代码时,使用快捷键进行复制粘贴,经常会导致编辑器短暂的停顿,光标不跟随,居然反应不过来,几近假死. 想来想去应该是编辑上的什么配置或者是IDE的什么功能导致,于是进入Pr ...

  3. UVA 1193 区间相关(greedy)

    input n d 1<=n<=1000 n行坐标xi,yi output 位于x轴扫描器的扫描距离为d,至少要多少个扫描器才能扫描到所有坐标 如果无法扫描完输出-1,否则输出扫描器个数 ...

  4. iOS8中的动态文本

    原文链接 : Swift Programming 101: Mastering Dynamic Type in iOS 8 原文作者 : Kevin McNeish Apple声称鼓励第三方App能够 ...

  5. Android实现播放GIF动画的强大ImageView

    我个人是比较喜欢逛贴吧的,贴吧里总是会有很多搞笑的动态图片,经常看一看就会感觉欢乐很多,可以释放掉不少平时的压力.确实,比起一张单调的图片,动态图片明显更加的有意思.一般动态图片都是GIF格式的,浏览 ...

  6. Loadrunner之文件的下载(八)

    老猪提供: https://mp.weixin.qq.com/s?__biz=MzIwOTMzNDEwNw==&mid=100000013&idx=1&sn=624f5bc74 ...

  7. 转载 Deep learning:五(regularized线性回归练习)

    前言: 本节主要是练习regularization项的使用原则.因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象.因此在模型的损失函数中,需 ...

  8. 关于html5的几个新标签在IE9之前不支持的解决办法

    IE8及之前的浏览器不支持用CSS的方法来使用这些尚未支持的结构元素,为了在Internet Explorer浏览器中也能正常使用这些结构元素,需要使用JavaScript脚本,如下:<scri ...

  9. FZU 1914 Funny Positive Sequence(线性算法)

    这个当时我没有做出来,看了很多人包括学长的代码才懂,我感觉最好的方法还是下面那一种,标记以谁开头的是不行的,我感觉有点不好理解,如果不懂举组样例在纸上写一下就会比较清楚了 #include<io ...

  10. loadrunner多负载机联合产生负载

    解说一: 多机联合产生负载 LOADRUNNER 对应用程序施压时,采用的方法就是让一台机器模拟很多用户,同时向被 测用户发送请求或进行操作.这样,如果一台测试机器模拟的虚拟用户数过多,他本身性能的下 ...