Description

 According to Bartjens 

The wide dissemination of calculators and computers has itsdisadvantages. Even students in technical disciplinestend to exhibit a surprising lack of calculating ability. Accustomed tothe use of calculators and computers, many ofthem are unable to make calculations
like 7 * 8 mentally or like 13 *17 using pencil and paper. We all know, butwho cares?

Professor Bartjens cares. Professor Bartjens is a bit old fashioned.Hedecided to give his students some training incalculating without electronic equipment by creating a collection ofcalculation problems, (like 2100 - 100 = ...). Tosimplify grading the problems,
he constructed them so that almost allof them had 2000 as an answer. Not all ofthem, of course. His students would be smart enough to recognize thepattern, and fill in 2000 everywhere withoutfurther thinking.

Unfortunately Professor Bartjens’ printer driver turned out to be evenmore old-fashioned than the professor himself,and it could not interface with his new printer. Inspecting the printedproblems, he soon recognized the pattern: noneof the operations was
transmitted to the printer. A problem like:

2100-100=

was printed as:

2100100=

Fortunately, all the digits and the equal sign were still printed.

To make this bad situation much worse, Professor Bartjens’ source filehad disappeared. So Professor Bartjens hasanother problem: what were his original problems? Given the fact thatthe answer (most likely) should be 2000, theline 2100100= could have been
any one of the lines:

2100-100=
2*100*10+0=
2*100*10-0=
2*10*0100=
2*-100*-10+0=

Professor Bartjens does remember a few things about how he wrote theproblems:

  • He is sure that whenever he wrote down a number (other than 0),itwould not start with a zero. So2*10*0100= could not have been one of his problems.
  • He also knows he never wrote the number zero as anything but 0.So hewould not have a problem like2*1000+000=.
  • He used only binary operators, not the unary minus or plus, so2*-100*-10+0= was not an option either.
  • He used the operators +, - and * only, avoiding the operator /(afterall, they were first year students).
  • He knew all problems followed the usual precedence andassociativityrules.

You are to help Professor Bartjens recover his problem set bywriting aprogram that when given a row of digits,insert one or more of the operators +, - and * in such a way that thevalue of the resulting expression equals 2000.

Input

The input consists of one or more test cases. Each test case is asingle line containing n digits ('0'–'9'), 1 ≤n ≤9,followed by an equal sign. There will not be any blanks embedded in theinput, but there may be some after theequal sign.

The last test case is followed by a line containing only the equalsign. This line should not be processed.

Output

For each test case, print the word Problem, then the number of thecase, then all possible ways of insertingoperators in the row of digits such that the resulting expression hasthe value 2000, subject to Professor Bartjens’memory of how he wrote the problems.
Use the format shown below. Ifthere is more than one possible problem,write the problems in lexicographic order. Each possible problemshould be on a new line, indented 2 spaces. If there is no solution theanswer IMPOSSIBLE should be printed,indented 2 spaces.

Sample Input Output for the Sample Input
2100100=
77=
=
Problem 1
2*100*10+0=
2*100*10-0=
2100-100=
Problem 2
IMPOSSIBLE

题意:求在一个字符串中插入运算符使得结果是2000的全部的可能

思路:枚举每一个位置得到如干个数字在回溯运算符得到结果,字典序输出

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <set>
using namespace std;
const int MAXN = 200;
const int INF = 0x3f3f3f3f;
typedef long long ll; string str;
ll res[MAXN];
int N, M, op[MAXN];
set<string> f; ll tran(int st, int ed) {
if (str[st] == '0' && ed-st > 0)
return -1;
ll x = 0;
for (int i = st; i <= ed; i++)
x = x*10 + str[i]-'0';
return x;
} void cal() {
int m = N-1;
int len = str.length()+N-2;
string p(len+1, '*');
p[len--] = '=';
for (int i = N-1; i >= 0; i--) {
ll x = res[i];
if (x == 0)
p[len--] = '0';
while (x) {
p[len--] = x%10+'0';
x /= 10;
}
if (i) {
if (op[m-1] == 0) {
p[len--] = '+';
m--;
}
else if (op[m-1] == 1) {
p[len--] = '-';
m--;
}
else {
p[len--] = '*';
m--;
}
}
}
f.insert(p);
} void findExpression(int cur, stack<ll> s) {
if (cur == N-1) {
ll ans = 0;
while (!s.empty()) {
ans += s.top();
s.pop();
}
if (N > 1 && ans == 2000)
cal();
return;
}
for (int i = 0; i < 3; i++) {
op[cur] = i;
if (i == 0) {
s.push(res[cur+1]);
findExpression(cur+1, s);
s.pop();
}
else if (i == 1) {
s.push(-res[cur+1]);
findExpression(cur+1, s);
s.pop();
}
else {
ll x = res[cur+1]*s.top();
s.pop();
s.push(x);
findExpression(cur+1, s);
}
}
} void solve(int cur, int n) {
if (cur == str.length()-1) {
N = n;
stack<ll> s;
s.push(res[0]);
findExpression(0, s);
return;
}
for (int i = cur; i < str.length()-1; i++) {
ll x = tran(cur, i);
if (x != -1) {
res[n] = x;
solve(i+1, n+1);
}
}
} int main() {
int cas = 1;
while (cin>>str) {
f.clear();
if (str.length() == 1 && str[0] == '=')
break;
printf("Problem %d\n", cas++);
solve(0, 0);
if (f.size() == 0)
printf(" IMPOSSIBLE\n");
else {
for (set<string>::iterator it = f.begin(); it != f.end(); it++)
cout << " " << *it << endl;
}
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

UVA - 817 According to Bartjens的更多相关文章

  1. UVa 817 According to Bartjens (暴力,DFS)

    题意:给出一个数字组成的字符串,然后在字符串内添加三种运算符号 * + - ,要求输出所有添加运算符并运算后结果等于2000的式子. 所有数字不能有前导0, 且式子必须是合法的. 析:这个题很明显的暴 ...

  2. 紫书 习题7-13 UVa 817(dfs+栈求表达式的值)

    题目链接  点击打开链接 这道题分为两个部分, 一用搜索枚举每种可能, 二计算表达式的值, 有挺多细节需要注意 特别注意我的代码中在计算表达式的值中用到了一个!(代码枚举中的!表示不加符号, 我现在说 ...

  3. 紫书 习题 8-17 UVa 11536 (滑动窗口)

    这道题说连续子序列, 马上就想到滑动窗口. 注意窗口里面的元素中小于等于k的才是有效元素.记录窗口里面有效元素的个数, 满足了之后开始 缩短窗口, 如果左端点不是有效元素或者即使窗口中存在这个元素的个 ...

  4. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  5. 【习题 8-17 UVA - 11536】Smallest Sub-Array

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 尺取法. 考虑一个1..i的窗口. 里面在到达了i位置的时候恰好有1..k这些数字了. 为了更接近答案. 显然可以试着让左端点变成2 ...

  6. UVa 10012 - How Big Is It? 堆球问题 全排列+坐标模拟 数据

    题意:给出几个圆的半径,贴着底下排放在一个长方形里面,求出如何摆放能使长方形底下长度最短. 由于球的个数不会超过8, 所以用全排列一个一个计算底下的长度,然后记录最短就行了. 全排列用next_per ...

  7. UVA 1412 Fund Management (预处理+状压dp)

    状压dp,每个状态可以表示为一个n元组,且上限为8,可以用一个九进制来表示状态.但是这样做用数组开不下,用map离散会T. 而实际上很多九进制数很多都是用不上的.因此类似uva 1601 Mornin ...

  8. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  9. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

随机推荐

  1. NLP | 自然语言处理 - 解析(Parsing, and Context-Free Grammars)

    什么是解析? 在自然语言的学习过程,个人一定都学过语法,比如句子能够用主语.谓语.宾语来表示.在自然语言的处理过程中.有很多应用场景都须要考虑句子的语法,因此研究语法解析变得很重要. 语法解析有两个基 ...

  2. wpf 9张图片的连连看

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  3. 3.cocos2dx它Menu,由menu为了实现场景切换

     1 头文件 TMenu.h #ifndef __TMENU_H__ #define __TMENU_H__ #include "cocos2d.h" USING_NS_CC; ...

  4. iOS_38_手势

    Pan平移手势 终于效果图: Swipe轻扫手势 LongPress长按手势 Pinch和Rotation手势 捏合(缩放)和旋转 终于效果图: 涂鸦 终于效果图: 事件分3大类:触摸.加速计.远程遥 ...

  5. 思维导图(自己整理,希望对大家有用):JavaScript函数+canvas绘图+Array数组

    1.javascript函数: 2.Array数组: 3.canvas绘图:

  6. Spring Framework 下载链接_现在有空

    下载链接:http://repo.spring.io/libs-release-local/org/springframework/spring/ 点击打开链接 包括Spring的各个版本号: 3.2 ...

  7. Log4j配置文件位置+Spring数据源配置文件位置

    一个.Log4j配置文件位置 1.加载自己主动 当应用程序启动,缺省情况下,这将是src文件夹搜索log4j.xml型材.如果不存在.我们将继续寻找log4j.properties文件,仅仅要找到当中 ...

  8. 随着MapReduce job实现去加重,多种输出文件夹

    总结以往的工作中遇到的一个问题. 背景: 操作和维护与scribe从apacheserver一再被推到日志记录,所以在这里ETL处理正在进行的重.有根据业务的输出类型是用于多文件夹一个需求.方便挂分区 ...

  9. (一)IE8以下background不起作用

    最近遇到了些小bug,在这里做个记录分享下.低版本的浏览器不支持新属性或者说对代码的解析方式不一样,导致最后解析出来的结果五花八门,各种浏览器之间的兼容的确是一个令开发人员头疼的事情,不过有时候换一个 ...

  10. CSDN markdown 编辑 第五章 UML

    这里大概只能产生两种类型的图: 序列图 框图 序列图 ```sequence A->B: 一句话证明你非常寂寞. Note right of B: thinking B->B: count ...