【Farm Craft】

【题目描述】

mhy住在一棵有n个点的树的1号结点上,每个结点上都有一个妹子。

mhy从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装zhx牌杀毒软件,第i个妹子安装时间为。

树上的每条边mhy能且仅能走两次,每次耗费1单位时间。mhy送完所有电脑后会回自己家里然后开始装zhx牌杀毒软件。

卸货和装电脑是不需要时间的。

求所有妹子和mhy都装好zhx牌杀毒软件的最短时间。

【Input】

第一行一个N,房屋数量

第二行N个数,C[i]

接下来的n - 1行表示相连接的房屋编号

【Output】

一个数字表示最少的时间

【Sample】

样例输入

6
1 8 9 6 3 2
1 3
2 3
3 4
4 5
4 6

样例输出

11

【Analyzation & Solution】

来看样例

模拟一下

1 3 2 3 4 5 4 6 4 3 1

此时time为10

再加上最后回到出发点的自己安装软件所需时间1

答案是11

可见,上述模拟是通过先走大的再走小的

这样的话能保证安装同时进行

那么这个贪心究竟对不对呢?

我们来看这个图

仅仅是把节点5的权值更改为了50

远远大于节点3的9

那么此时显然我们要先遍历5号节点才是最优

如果按照上述贪心一定是不成立的

那怎么办呢?

咳咳

模拟样例的过程中发现

每个节点都有两种决策

这不禁让人联想到了树型DP

定义f[i]表示遍历以i为根的子树最短所用时间

size[i]即当前子树的大小(边数)

引用某大佬の证明

假设u节点有儿子x和y,则如果先走x的话u的时间就为max(f[x]+1,f[y]+2*size[x]+1);
同理,先走 y 的话 u 的时间就为max(f[y]+1,f[x]+2*size[y]+1),若先安装x合适,则必有2*size[x]+f[y]+1>2*size[y]+f[x]+1,即f[x]-2*size[y]<f[y]-2*size[x]。
既然这样,我们排序 f[i] - size[i] 即可。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; inline int read(){
int x = 0, w = 1;
char ch = getchar();
for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') w = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return x * w;
} const int maxn = 500000+5;
int t, c[maxn], head[maxn], n, tot;
int f[maxn], size[maxn];
int q[maxn];
struct node{
int to,nxt;
}e[maxn << 1]; inline bool cmp(int x, int y){
return f[x] - 2 * size[x] > f[y] - 2 * size[y];
} inline void add(int x, int y){
e[++tot].to = y;
e[tot].nxt = head[x];
head[x] = tot;
} inline void dfs(int u, int fa){
int cnt=0, sum=1;
if(u == 1) f[u]=0;
else f[u] = c[u];
size[u] = 1;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
if(v == fa) continue;
dfs(v,u);
size[u] += size[v];
}
for(int i = head[u]; i; i = e[i].nxt)
if(e[i].to != fa)
q[++cnt] = e[i].to;
sort(q + 1, q +1 + cnt, cmp);
for(int i = 1; i <= cnt; i++){
f[u] = max(f[u], f[q[i]] + sum);
sum += 2 * size[q[i]];
}
} int main(){
n = read();
for(int i = 1; i <= n; i++) c[i] = read();
for(int i = 1; i <= n - 1; i++){
int x = read(), y = read();
add(x, y);
add(y, x);
}
dfs(1, -1);
printf("%d", max(f[1], c[1] + 2 * (n - 1)));
return 0;
}

POI2014 FAR-FarmCraft的更多相关文章

  1. [补档][Poi2014]FarmCraft

    [Poi2014]FarmCraft 题目 mhy住在一棵有n个点的树的1号结点上,每个结点上都有一个妹子. mhy从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装zhx牌杀毒 ...

  2. [BZOJ 3829][POI2014] FarmCraft

    先贴一波题面... 3829: [Poi2014]FarmCraft Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 421  Solved: 197[ ...

  3. 【BZOJ3829】[Poi2014]FarmCraft 树形DP(贪心)

    [BZOJ3829][Poi2014]FarmCraft Description In a village called Byteville, there are   houses connected ...

  4. FarmCraft[POI2014]

    题目描述 In a village called Byteville, there are   houses connected with N-1 roads. For each pair of ho ...

  5. BZOJ3829[Poi2014]FarmCraft——树形DP+贪心

    题目描述 In a village called Byteville, there are   houses connected with N-1 roads. For each pair of ho ...

  6. 【bzoj3829】[Poi2014]FarmCraft 贪心

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826667.html 题目描述 In a village called Byteville, there are   ...

  7. [POI2014][树形DP]FarmCraft

    题目 In a village called Byteville, there are houses connected with N-1 roads. For each pair of houses ...

  8. BZOJ3829 : [Poi2014]FarmCraft

    d[x]表示走完x的子树并回到x所需的时间 f[x]表示从走到x开始计时,x子树中最晚的点安装完的最早时间 d[x]=sum(d[i]+2),i是x的孩子 f[x]的计算比较复杂: 考虑将x的各棵子树 ...

  9. [Poi2014]FarmCraft 树状dp

    对于每个点,处理出走完其子树所需要的时间和其子树完全下载完软件的时间 易证,对于每个点的所有子节点,一定优先选择差值大的来给后面的时间 树规+贪心. #include<cstdio> #i ...

  10. BZOJ3829 [Poi2014]FarmCraft 【树形dp】

    题目链接 BZOJ3829 题解 设\(f[i]\)为从\(i\)父亲进入\(i\)之前开始计时,\(i\)的子树中最晚装好的时间 同时记\(siz[i]\)为节点\(i\)子树大小的两倍,即为从父亲 ...

随机推荐

  1. webpack+vue+.vue组件模板文件 所需要的包

    {  "name": "webpack-study02",  "version": "1.0.0",  "de ...

  2. 超强教程!在树莓派上构建多节点K8S集群!

    在很长一段时间里,我对于在树莓派上搭建Kubernetes集群极为感兴趣.在网络上找到一些教程并且跟着实操,我已经能够将Kubernetes安装在树莓派上,并在三个Pi集群中工作.然而,在master ...

  3. 微信weixin://xxx 分析

    通过weixin://来打开微信客户端: <a href="weixin://">打开微信</a> <a href="weixin://dl ...

  4. Remap 后的 USART1 不能发送数据

    最近在使用 STM32 的 USART1 时,遇到一点问题,记录一下. 如果 USART1 不是使用 PA9 和 PA10 作接收和发送引脚,而是 PB6 和 PB7,那么有一点就一定得注意了:此时 ...

  5. @bzoj - 2658@ [Zjoi2012]小蓝的好友(mrx)

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事 ...

  6. 我深爱的Java,对不起,我出轨了!!!呸!渣男!

    我对Java情有独钟 大学三年来,我主学的编程语言一直是Java,为了学好它,我付出了很多心血.现在回想,确实是Java改变了我,造就了我. 因为Java,我自愿在学校组织学弟学妹,给他们讲解Java ...

  7. android中getWidth()和getMeasuredWidth()之间的区别

    先给出一个结论:getMeasuredWidth()获取的是view原始的大小,也就是这个view在XML文件中配置或者是代码中设置的大小.getWidth()获取的是这个view最终显示的大小,这个 ...

  8. jmeter组件中 测试计划,线程组,sampler等等

    [测试计划] 这边用户定义的变量,定义整个测试中使用的重复值(全局变量),一般定义服务器的ip,端口号 [线程组] 关于,线程组,我简单聊聊,有不对的地方欢迎大家拨乱反正 线程数:你需要运行的线程 比 ...

  9. Java架构师如何学习?

    引言 古人云:"活到老,学到老."互联网算是最辛苦的行业之一,"加班"对工程师来说已是"家常便饭",同时互联网技术又日新月异,很多工程师都疲 ...

  10. 黎活明8天快速掌握android视频教程--17_创建数据库与完成数据添删改查

    1.我们首先来看下整个项目 项目也是采用mvc的框架 package dB; import android.content.Context; import android.database.sqlit ...