【洛谷 p3390】模板-矩阵快速幂(数论)
题目:给定n*n的矩阵A,求A^k。
解法:利用矩阵乘法的定义和快速幂解答。注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long LL; 前使用 LL......━━( ̄ー ̄*|||━━)
P.S.在multi函数里,若将所有相乘的和先加起来不会爆 long long ,那就最后再模会快不少。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 const int N=110,D=1010;
9 const LL K=(LL)1e12+10,mod=(LL)1e9+7;
10 int n;
11 struct mat{LL s[N][N];}a,b,c,d,e,f;
12
13 mat multi(mat c,mat d)
14 {
15 for (int i=1;i<=n;i++)
16 for (int j=1;j<=n;j++)
17 {
18 e.s[i][j]=0;
19 for (int k=1;k<=n;k++)
20 e.s[i][j]=(e.s[i][j]+mod+(c.s[i][k]*d.s[k][j])%mod+mod)%mod;
21 }
22 return e;
23 }
24 mat qpow(mat a,LL k)
25 {
26 b=a; k--;
27 while (k>0)
28 {
29 if (k&1) b=multi(b,a);
30 a=multi(a,a);
31 k>>=1;
32 }
33 return b;
34 }
35 int main()
36 {
37 LL k;
38 scanf("%d%lld",&n,&k);
39 for (int i=1;i<=n;i++)
40 for (int j=1;j<=n;j++)
41 scanf("%lld",&f.s[i][j]);
42 f=qpow(f,k);
43 for (int i=1;i<=n;i++)
44 {
45 for (int j=1;j<=n;j++)
46 printf("%lld ",f.s[i][j]);
47 printf("\n");
48 }
49 return 0;
50 }
【洛谷 p3390】模板-矩阵快速幂(数论)的更多相关文章
- 【洛谷P3390】矩阵快速幂
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...
- 3990 [模板]矩阵快速幂 洛谷luogu
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- [CQOI2018]交错序列 (矩阵快速幂,数论)
[CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- HDU6395 Sequence(矩阵快速幂+数论分块)
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...
- 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...
- 洛谷 P1965 转圈游戏 —— 快速幂
题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
随机推荐
- LeetCode150 逆波兰表达式求值
根据逆波兰表示法,求表达式的值. 有效的运算符包括 +, -, *, / .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 说明: 整数除法只保留整数部分. 给定逆波兰表达式总是有效的.换句话说 ...
- 隐马尔科夫模型(HMM)原理详解
隐马尔可夫模型(Hidden Markov Model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM在语音识别.自然语言处理.生物信息.模 ...
- docker 删除和拉取镜像
删除镜像 # docker rmi -f 镜像id # 删除指定镜像 docker rmi -f 25d5f6s564 # docker rmi -f 镜像id 镜像id # 删除多个镜像 docke ...
- 攻防世界—pwn—guess_num
题目分析 checksec检查文件保护机制 这个结果看的我满是问号??? \n ida分析程序 是一个猜数字的游戏,需要全部输入正确才能得到flag 根据大佬的wp得出一下内容 先使用srand()进 ...
- 腾讯云COS对象存储占据数据容灾C位
说到公有云容灾,大家首先想到的是云上数据备份. 然而,随着企业核心业务逐渐从线下迁移到云上,客户提出了更高的要求.如何确保云上业务的高可用.数据的高可靠,这对云厂商提出了新的挑战. 腾讯云作为全球领先 ...
- 两节锂电池保护IC,芯片电路图如何设计
两节锂电池出了充电电路外,必须搭配的也就是两节锂电池的保护板电路和芯片了.对两节节串联可再充电锂离子/锂聚合物电池的过充电.过放电和过电流进行保护.和电池反接保护功能,这些都是极其重要的. 首先设计两 ...
- ThreadLocal 原理分析
用法 ThreadLocal<String> threadLocal = new ThreadLocal<>(); // 无初始值 ThreadLocal<String& ...
- linux中的虚拟环境工具
1.虚拟环境工具的学习 python的虚拟环境,其实就是在机器上,方便的创建出多个解释器,每个解释器运行一个项目,互相之间不受影响 2.virtualenv工具,可以方便的创建,使用,删除也很方便 3 ...
- 30分钟带你了解「消息中间件」Kafka、RocketMQ
消息中间件的应用场景 主流 MQ 框架及对比 说明 Kafka 优点 Kafka 缺点 RocketMQ Pulsar 发展趋势 各公司发展 Kafka Kafka 是什么? Kafka 术语 Kaf ...
- Elasticsearch从入门到放弃:浅谈算分
今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...