题意:求取到总和为K的倍数的糖果的最大值。

解法:用模K的余数作为一个维度,f[i][j]表示在前i种糖果中取到总颗数模K余j的最大总颗数。

注意——f[i-1][j]要正常转移,而其他要之前的状态存在才能状态转移。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 int a[110],f[110][110];
8 int mmax(int x,int y) {return x>y?x:y;}
9
10 int main()
11 {
12 int n,k;
13 scanf("%d%d",&n,&k);
14 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
15 memset(f,0,sizeof(f));
16 for (int i=1;i<=n;i++)
17 for (int j=0;j<k;j++)
18 {
19 f[i][j]=f[i-1][j];//
20 int x=(j-(a[i]%k)+k)%k;
21 if (f[i-1][x]||!x) f[i][j]=mmax(f[i][j],f[i-1][x]+a[i]);
22 }
23 printf("%d\n",f[n][0]);
24 return 0;
25 }

【noi 2.6_2989】糖果(DP)的更多相关文章

  1. openjudge2989糖果[DP 01背包可行性]

    openjudge2989糖果 总时间限制:  1000ms 内存限制:  65536kB 描述 由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  4. noi 1944 吃糖果

    题目链接:http://noi.openjudge.cn/ch0206/1944/ 根据第一天吃的个数递推,发现这个递推关系很像斐波那契数列. http://paste.ubuntu.com/2340 ...

  5. BZOJ 2436 Noi嘉年华(优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2436 题意:有一些活动,起始时间持续时间已知.有两个场地.每个活动最多只能在一个场地举行 ...

  6. NOI Online 游戏 树形dp 广义容斥/二项式反演

    LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g ...

  7. 7.1 NOI模拟赛 计数问题 dp

    还是可以想出来的题目 不过考场上没有想出来 要 引以为戒. 初看觉得有点不可做 10分给到了爆搜. 考虑第一个特殊情况 B排列为1~m. 容易发现A排列中前m个数字 他们之间不能产生交换 且 第k个数 ...

  8. noi 162 post office dp

    大致题意: 有v个村庄,每个村庄有各自的位置,且每个位置互不相同.现在要在村庄上设立P个邮局,使每个村庄到最近的邮局的距离之和最小. 分析: 定义状态d[i][j]表示前i个村庄,在这i个村庄中设立j ...

  9. NOI 动态规划题集

    noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...

随机推荐

  1. 初学java进制转换方面补充学习

    进制转换: 基础: ​ 二进制用的数为:0/1 ​ 八进制用的数为:0/1/2/3/4/5/6/7 ​ 十进制用的数为:0/1/2/3/4/5/6/7/8/9 ​ 十六进制用的数为:0/1/2/3/4 ...

  2. 详解Vue中的computed和watch

    作者:小土豆 博客园:https://www.cnblogs.com/HouJiao/ 掘金:https://juejin.cn/user/2436173500265335 1. 前言 作为一名Vue ...

  3. Linux Bash Shell常用快捷键

    Linux Bash Shell常用快捷键 table { margin: auto } 快捷键 功能 tab 补全 ctrl + a 光标回到命令行首 ctrl + e 光标回到命令行尾 ctrl ...

  4. CPNDet:粗暴地给CenterNet加入two-stage精调,更快更强 | ECCV 2020

    本文为CenterNet作者发表的,论文提出anchor-free/two-stage目标检测算法CPN,使用关键点提取候选框再使用两阶段分类器进行预测.论文整体思路很简单,但CPN的准确率和推理速度 ...

  5. LeetCode349. 两个数组的交集

    题目 给定两个数组,编写一个函数来计算它们的交集. 分析 数组元素值可以很大,所以不适合直接开数组进行哈希,这里要学习另一种哈希方式:集合 集合有三种,区别见下面代码随想录的Carl大佬的表格,总结的 ...

  6. win10打开IIS服务并发布网站

    1.打开控制面板 win+x后点击控制面板 2.点击程序集下边的解除安装程式 3.点击开启或关闭windows功能 4.找到Internet information services并勾选前面的复选框 ...

  7. python_mmdt:一种基于敏感哈希生成特征向量的python库(一)

    概述 python_mmdt是一种基于敏感哈希的特征向量生成工具.核心算法使用C实现,提高程序执行效率.同时使用python进行封装,方便研究人员使用. 本篇幅主要介绍涉及的相关基本内容与使用,相关内 ...

  8. 并发编程之fork/join(分而治之)

    1.什么是分而治之 分而治之就是将一个大任务层层拆分成一个个的小任务,直到不可拆分,拆分依据定义的阈值划分任务规模. fork/join通过fork将大任务拆分成小任务,在将小任务的结果join汇总 ...

  9. Python格式化处理json数据的方式

    1.问题 在遇到json数据的过程中,我们经常需要获取json数据中某个值的操作,如果是用get方法去取比较繁琐,接下来介绍两种方式来取值. 2.jsonpath来格式化处理json数据 2.1介绍 ...

  10. vue-cli快速创建项目,可视化创建

    之前学习了交互式创建,发现过程无聊,而且不方便,后面又学习了图形可视化创建,下面进行分享 1.打开cmd 2.输入vue ui,输入后会出现如下 C:\Users\12235>vue ui St ...