考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题。

要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割。对应到\(AC\)自动机上,就是匹配到一个禁忌串后,就直接转移到根节点。

若用朴素的\(DP\)解决,发现题目中的\(len\)过大,于是用矩阵快速幂优化。

先构造初始矩阵,\(a_{i,j}\)的值表示当串长为\(1\)时从状态\(i\)转移到状态\(j\)的概率,对这样的一个矩阵进行\(len\)次幂后,所得的含义即为串长为\(len\)时所对应的概率。

同时新增一个状态\(t\)来统计期望,若转移过程中,转移到了一个合法的状态,即匹配上了一个禁忌串,那么就可以把当前概率统计到状态\(t\)上了,最后直接查询根到状态\(t\)即可。

构造矩阵时,分情况讨论。设\(P=\frac{1}{alphabet}\),若一个状态\(x\)可转移到状态\(y\),若状态\(y\)不是禁忌串的终止状态,则\(a_{x,y}\)加上\(P\),否则让\(a_{x,root}\)加上\(P\)和\(a_{x,t}\)加上\(P\)。

具体实现细节看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 110
using namespace std;
typedef long double ld;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,l,alph,tot,root;
ld P;
int trie[maxn][30],fail[maxn];
bool end[maxn];
char s[maxn];
struct matrix
{
ld a[maxn][maxn];
}m,e;
matrix operator *(const matrix &x,const matrix &y)
{
matrix z;
memset(z.a,0,sizeof(z.a));
for(int k=root;k<=tot+1;++k)
for(int i=root;i<=tot+1;++i)
for(int j=root;j<=tot+1;++j)
z.a[i][j]+=x.a[i][k]*y.a[k][j];
return z;
}
matrix qp(matrix x,int y)
{
matrix t=e;
while(y)
{
if(y&1) t=t*x;
x=x*x;
y>>=1;
}
return t;
}
void insert()
{
int len=strlen(s+1),p=root;
for(int i=1;i<=len;++i)
{
int ch=s[i]-'a';
if(!trie[p][ch]) trie[p][ch]=++tot;
p=trie[p][ch];
}
end[p]=true;
}
void build()
{
queue<int> q;
for(int i=0;i<alph;++i)
if(trie[root][i])
q.push(trie[root][i]);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=0;i<alph;++i)
{
int y=trie[x][i];
if(y)
{
fail[y]=trie[fail[x]][i];
end[y]|=end[fail[y]],q.push(y);
}
else trie[x][i]=trie[fail[x]][i];
}
}
e.a[tot+1][tot+1]=m.a[tot+1][tot+1]=1;
for(int x=root;x<=tot;++x)
{
e.a[x][x]=1;
for(int ch=0;ch<alph;++ch)
{
int y=trie[x][ch];
if(end[y]) m.a[x][tot+1]+=P,m.a[x][root]+=P;
else m.a[x][y]+=P;
}
}
}
int main()
{
read(n),read(l),read(alph),P=(ld)1.0/(ld)alph;
for(int i=1;i<=n;++i)
scanf("%s",s+1),insert();
build(),m=qp(m,l);
printf("%Lf",m.a[root][tot+1]);
return 0;
}

题解 洛谷 P4569 【[BJWC2011]禁忌】的更多相关文章

  1. 洛谷 P4569 - [BJWC2011]禁忌(AC 自动机+矩阵乘法)

    题面传送门 又好久没做过 AC 自动机的题了,做道练练手罢( 首先考虑对于某个固定的字符串怎样求出它的伤害,我们考虑贪心,每碰到出现一个模式串就将其划分为一段,最终该字符串的代价就是划分的次数.具体来 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. typora中的图片处理20200622

    typora中的图片处理20200622 食用建议 typora作为markdown的书写神器,一般习惯的流程是在typora中写完,然后复制粘贴到博客园中,然而,markdown中图片采用的是本地连 ...

  2. liunx中组合查询的命令

    今天无聊,把以前的liunx命令拿过练练,尤其是一些组合命令并带有逻辑的.这里的script是一个文件夹. 1.查看一个文件的最后3行的第一行. [root@localhost home]# tail ...

  3. opencv+python实现图像锐化

    突然发现网上都是些太繁琐的方法,我就找opencv锐化函数咋这么墨迹. 直接上代码: kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], ...

  4. dart快速入门教程 (1)

    1.环境搭建 1.1.dart简介 Dart 是一种 易于学习. 易于扩展.并且可以部署到 任何地方 的 应用 编程 语言.Google 使用 Dart 来开发 大型应用.flutter使用dart语 ...

  5. 堆、栈、数据区、bss、代码段

    一个程序的运行是需要内存的,那么我们平常写的程序的内存都是怎么分配的呢 (1)首先我们要知道,内存是真实存在的,内存是一个物理器件.它时由操作系统管理的,我们平常只要使用它就行了,为了方便管理.操作系 ...

  6. Buy a Ticket 【最短路】

    题目 Musicians of a popular band "Flayer" have announced that they are going to "make t ...

  7. 吐血推荐,想进BAT必看

    不必太纠结于当下,也不必太忧虑未来,人生没有无用的经历,当你经历过一些事情后,眼前的风景已经和从前不一样了.--村上春树 一.包含如下内容 ActiveMQ消息中间件面试专题 BAT80道面试题 BA ...

  8. Nacos配置中心原理

    动态配置管理是 Nacos 的三大功能之一,通过动态配置服务,我们可以在所有环境中以集中和动态的方式管理所有应用程序或服务的配置信息. 动态配置中心可以实现配置更新时无需重新部署应用程序和服务即可使相 ...

  9. jQuery jqGrid 4.7

    https://jeesite.gitee.io/front/jqGrid/4.7/index.html https://jeesite.gitee.io/front/jqGrid/4.7/jqgri ...

  10. CentOS7 安装rz和sz命令,安装netstat

    yum install lrzsz CentOS7 安装netstat命令 yum install net-tools