题意分析

给出$n$个数,求这$n$个数两两的最小公倍数的最大公约数

思路分析

通过分析样例可以发现,如果要成为这$n$个数两两的最小公倍数的公约数,至少要是这$n$个数中$n-1$个数的约数,否则就至少会有两个数的最小公倍数无法被这个数整除。

所以只要找出所有满足至少是这$n$个数中的$n-1$个数的约数的数就可以了。找的方法很简单,只要每个数去试一下能整除被几个数就可以了。这里有几个需要注意的点:

- 找出的数应该是质数,否则可能会因为该数的约数已被找出而出错。可以不必先筛出质数,从小到大依次尝试并在找出一个数后除掉它可以保证找出的都是质数。
- 一个数作为约数时次数不一定为1,因此对于一个数要多次尝试
- 尝试的时候如果当前已经有2个数不能被整除,可以直接停止,节省时间

因为最后一点的剪枝,实际上全部尝试的次数很少,因此时间上完全过得去。

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const int N=1e5+100;
int n,maxn;
int a[N];
ll ans=1;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),maxn=max(maxn,a[i]);
for(int i=2;i<=maxn;i++)
{
int cnt=0;
for(int j=1;j<=n &&(cnt==j-1 || cnt==j-2);j++)
if(a[j]%i==0)
cnt++;//尝试能整除几个数
if(cnt>=n-1)//满足条件
{
ans*=i;//累计答案
for(int j=1;j<=n;j++)
if(a[j]%i==0)
a[j]/=i;//除掉
i--;//再试一次
}
}
printf("%lld",ans);
return 0;
}

CF1349A Orac and LCM 题解的更多相关文章

  1. Codeforces #6241 div2 C. Orac and LCM (数学)

    题意:给你一个数列,求所有子序列对的\(lcm\),然后求这些所有\(lcm\)的\(gcd\). 题解:我们对所有数分解质因数,这里我们首先要知道一个定理: ​ 对于\(n\)个数,假如某个质数\( ...

  2. 洛谷 P1891 疯狂LCM 题解

    原题链接 享受推式子的乐趣吧 数论真有趣! 庆祝:数论紫题第 \(3\) 道. \[\sum_{i=1}^n \operatorname{lcm}(i,n) \] \[= \sum_{i=1}^n \ ...

  3. CF1473B String LCM 题解

    Content 如果一个字符串 \(s\) 由若干个字符串 \(t\) 拼接而成,则我们说 \(s\) 能被 \(t\) 整除.定义 \(s_1,s_2\) 的最短公倍串为可以同时被 \(s_1,s_ ...

  4. 51NOD 2026:Gcd and Lcm——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=2026 参考及推导:https://www.cnblogs.com/ivo ...

  5. Codeforces Round #641 (Div. 2)

    只写了A~D A - Orac and Factors 题意:f(n)就是n的第二小因数,问执行k次 n=f(n)+n 后的结果. 题解:如果一直找第二小的因子的话,1e9肯定得t.看下边样例解释就会 ...

  6. 题解:洛谷P1891 疯狂LCM

    原题链接 题目描述 描述: 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N) ...

  7. Pairs Forming LCM (LCM+ 唯一分解定理)题解

    Pairs Forming LCM Find the result of the following code: ; i <= n; i++ )        for( int j = i; j ...

  8. BZOJ2694:Lcm——包看得懂/看不懂题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2694 Description 对于任意的>1的n gcd(a, b)不是n^2的倍数 也就是说 ...

  9. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

随机推荐

  1. Python os.fchdir() 方法

    概述 os.fchdir() 方法通过文件描述符改变当前工作目录.高佣联盟 www.cgewang.com Unix, Windows 上可用. 语法 fchdir()方法语法格式如下: os.fch ...

  2. PHP array_udiff() 函数

    实例 比较两个数组的键值(使用用户自定义函数比较键值),并返回差集: <?phpfunction myfunction($a,$b){if ($a===$b){return 0;}return ...

  3. PHP in_array() 函数

    实例 在数组中搜索值 "Runoob" ,并输出一些文本: <?php $sites = array("Google", "Runoob&quo ...

  4. luogu P6097 子集卷积 FST FWT

    LINK:子集卷积 学了1h多 终于看懂是怎么回事了(题解写的不太清楚 翻了好几篇博客才懂 一个需要用到的性质 二进制位为1个数是i的二进制数s 任意两个没有子集关系.挺显然. 而FST就是利用这个性 ...

  5. Django自学教程PDF高清电子书百度云网盘免费领取

    点击获取提取码:x3di 你一定可以学会,Django 很简单! <Django自学教程>的作者学习了全部的 Django英文的官方文档,觉得国内比较好的Django学习资源不多,所以决定 ...

  6. tracebace用法

    介绍一下traceback 平时看到的程序的错误信息也就是traceback信息 举个简单例子: import traceback try: s = [1, 2, 3] print s[5] exce ...

  7. IntelliJ IDEA 修改内存大小,使得idea运行更流畅。(转发)

    原文地址:https://blog.csdn.net/qq_27093465/article/details/81947933 idea有个配置文件,可以设置内存大小的,就跟咱的jvm的内存里面的堆大 ...

  8. 利用这10个工具,你可以写出更好的Python代码

    我每天都使用这些实用程序来使我的Python代码可显示. 它们是免费且易于使用的. 编写漂亮的Python比看起来难. 作为发布工作流程的一部分,我使用以下工具使代码可显示并消除可避免的错误. 很多人 ...

  9. C#LeetCode刷题之#830-较大分组的位置(Positions of Large Groups)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3750 访问. 在一个由小写字母构成的字符串 S 中,包含由一些连 ...

  10. Java 语法 try catch使用容易忽略的细节 BigDecimal

    try catch使用细节 一. try catch的使用方式容易理解,两者最终都要执行finally中的代码,而当return在try和catch中又会有什么效果? 如果我们做一个简单的例子就会发现 ...