关于st表的推导
#include <bits/stdc++.h> using namespace std;
const int maxn=1e6+7;
int st[maxn][32];
int a[maxn],n;
void init(){
int i,j;
//st[i][j]表示i到i+2^j-1区间的最小值
//先预处理区间长度为1的
for(i=0;i<n;++i) st[i][0]=a[i];
for(i=0;i<n;++i){
for(j=1;i+2^(j)-1<n;++j){
//i~i+2^(j-1)-1
//i+2^(j-1)~i+2^(j-1)+2^(j-1)-1=>i+2^j-1;
//一定要发现这个显然的事实就是
//2^(j-1)+2^(j-1)=2^j;
st[i][j]=min(s[i][j-1],s[i+2^(j-1)][j-1]);
}
}
}
int queryMin(int l,int r){
int len=r-1+1;
int index=log(len);
//st[l][index] l~l+2^(index)-1
//2^(index)<=(r-l+1); l+2^(index)-1<=r
//r-(l+2^(index)-1)>=0 还差多少元素没放进来
//x+LEN=l+2^(index)-1+(r-(l+2^(index)-1));
//x+2^(index)-1=r;//区间长度固定。。起点是多少才能正好跑到r,列一个简单的方程才能解决
//x=r+1-(2^(index));
return min(st[l][index],st[r+1-(2^(index))][index]);
}
int main(){
while(~scanf("%d",&n)){
int i,q,l,r;
for(i=0;i<n;++i){
scanf("%d",a+i);
}
init();
scanf("%d",&q);
for(i=0;i<q;++i){
scanf("%d%d",&l,&r);
printf("%d\n",query(l,r));
}
}
return 0;
}
上面这个^符号代表幂次。。而c++里只有异或。。这就是为什么这是一个伪代码的意思
先来一个终极伪代码
推导过程如上。。
下面给一个真正的的代码
#include <bits/stdc++.h> using namespace std;
const int maxn=1e6+7;
int st[maxn][32];
int a[maxn],n;
void init(){
int i,j;
//st[i][j]表示i到i+2^j-1区间的最小值
//先预处理区间长度为1的
for(i=0;i<n;++i) st[i][0]=a[i];
for(i=0;i<n;++i){
for(j=1;i+(1<<j)-1<n;++j){//这里有一个优化。。本来是小于32的。。问题规模较小是只是相当于一个常数的优化
//i~i+2^(j-1)-1
//i+2^(j-1)~i+2^(j-1)+2^(j-1)-1=>i+2^j-1;
//一定要发现这个显然的事实就是
//2^(j-1)+2^(j-1)=2^j;
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
}
int queryMin(int l,int r){
int k=log(r-l+1);
//st[l][index] l~l+2^(index)-1
//2^(index)<=(r-l+1); l+2^(index)-1<=r
//r-(l+2^(index)-1)>=0 还差多少元素没放进来
//x+LEN=l+2^(index)-1+(r-(l+2^(index)-1));
//x+2^(index)-1=r;//区间长度固定。。起点是多少才能正好跑到r,列一个简单的方程才能解决
//x=r+1-(2^(index));
return min(st[l][k],st[r+1-(1<<k)][k]);
}
int main(){
while(~scanf("%d",&n)){
int i,q,l,r;
for(i=0;i<n;++i){
scanf("%d",a+i);
}
init();
scanf("%d",&q);
for(i=0;i<q;++i){
scanf("%d%d",&l,&r);
printf("%d\n",queryMin(l-1,r-1));
}
}
return 0;
}
还有一个对于新手来说理解的坑。。那就是int x=log(val)实际上是对log的值向下取整。。这一点非常重要
只有这个成立我们注释里的推导才会成立。。另外有一些没用的推导。。但是我没有删掉。。这是因为想记录一下我全部的思考过程
关于st表的推导的更多相关文章
- ST表学习总结
前段时间做16年多校联合赛的Contest 1的D题(HDU 5726)时候遇到了多次查询指定区间的gcd值的问题,疑惑于用什么样的方式进行处理,最后上网查到了ST表,开始弄得晕头转向,后来才慢慢找到 ...
- P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表
P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...
- POJ3693 Maximum repetition substring [后缀数组 ST表]
Maximum repetition substring Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9458 Acc ...
- 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2473 Solved: 1211[Submit][Statu ...
- 【BZOJ-3956】Count ST表 + 单调栈
3956: Count Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 173 Solved: 99[Submit][Status][Discuss] ...
- 【BZOJ-4569】萌萌哒 ST表 + 并查集
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 459 Solved: 209[Submit][Status] ...
- 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分
4310: 跳蚤 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 180 Solved: 83[Submit][Status][Discuss] De ...
- HDU5726 GCD(二分 + ST表)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence of N(N≤100, ...
- Hdu 5289-Assignment 贪心,ST表
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Assignment Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- PAT练习num2-挖掘机技术哪家强
为了用事实说明挖掘机技术到底哪家强,PAT 组织了一场挖掘机技能大赛.现请你根据比赛结果统计出技术最强的那个学校. 输入格式: 输入在第 1 行给出不超过 1 的正整数 N,即参赛人数.随后 N 行, ...
- Android事件分发机制三:事件分发工作流程
前言 很高兴遇见你~ 本文是事件分发系列的第三篇. 在前两篇文章中,Android事件分发机制一:事件是如何到达activity的? 分析了事件分发的真正起点:viewRootImpl,Activit ...
- 数字化转型中企业真正困惑-传统IT架构如何改造和全面上云
对数字化转型,整体来看大部分人相对关心问题主要还是集中在以下两个方面. 企业传统的IT架构如何如何微服务改造,演进发展 企业传统IT如何全面上云和实施云原生 以上两点实际都包括一个关键点,即企业当前内 ...
- 华为路由配置IPSec
用该方法配置后用抓包工具抓取的就看不到两个通讯点的IP,而显示的是加密点的IP. 原文:https://www.cnblogs.com/yangyang1988/p/11559819.html
- linux通过ntp同步时间
1.安装服务 yum install ntp ##安装ntp服务,这个和ntpdate不一样哦,用这个比较好 systemctl start ntpd.service ###启动服务 systemct ...
- (02)-Python3之--列表(list)操作
1.定义 列表的关键字:list 列表以[]括起来,数据之间用 , 隔开.列表当中的数据,可以是任意类型.数值是可以重复的. 列表元素是 可变的,顺序是 有序的. 例如: b = ["萝卜& ...
- ensure that both new and old access_token values are available within five minutes, so that third-party services are smoothly transitioned.
WeChat public doc https://developers.weixin.qq.com/doc/offiaccount/en/Basic_Information/Get_access_t ...
- 学习Python之路
陆续学习python已经有一段时间了,但是真正的安下心来学习还是在最近的一个月时间里,虽然每天学习的时间很有限,但是通过点滴的学习让自己感到从未有过的充实,完全打掉了以往认学学习一门语言难于登天的心理 ...
- 活动精彩实录 | 王峰:Cassandra在360的多场景应用及未来趋势
点击此处观看完整活动视频 大家好,我是360的王峰,我今天主要通过Cassandra在多场景下的应用来介绍一下Cassandra在360落地的情况. 我会从以下这几个方面进行介绍.首先介绍下Cassa ...
- 关闭(隐藏)VS2019控制台上文件路径的显示
昨天有个朋友问我,怎么关闭在运行程序后,控制台上显示的文件路径啊?啥??我突然不知道他说的说什么,然后我就自己随便打了几行运行了一下,才知道原来他说的是这个: 一开始我也没在意,我就告诉他,这个无所谓 ...