1、安装

pip install pycaret

在谷歌colab中还要运行:

from pycaret.utils import enable_colab
enable_colab()

2、获取数据

(1)利用pandas库加载

import pandas as pd
data = pd.read_csv('c:/path_to_data/file.csv')

(2)使用自带的数据

from pycaret.datasets import get_data
data = get_data('juice')

数据集列表:

Dataset Data Types Default Task Target Variable # Instances # Attributes
anomaly Multivariate Anomaly Detection None 1000 10
france Multivariate Association Rule Mining InvoiceNo, Description 8557 8
germany Multivariate Association Rule Mining InvoiceNo, Description 9495 8
bank Multivariate Classification (Binary) deposit 45211 17
blood Multivariate Classification (Binary) Class 748 5
cancer Multivariate Classification (Binary) Class 683 10
credit Multivariate Classification (Binary) default 24000 24
diabetes Multivariate Classification (Binary) Class variable 768 9
electrical_grid Multivariate Classification (Binary) stabf 10000 14
employee Multivariate Classification (Binary) left 14999 10
heart Multivariate Classification (Binary) DEATH 200 16
heart_disease Multivariate Classification (Binary) Disease 270 14
hepatitis Multivariate Classification (Binary) Class 154 32
income Multivariate Classification (Binary) income >50K 32561 14
juice Multivariate Classification (Binary) Purchase 1070 15
nba Multivariate Classification (Binary) TARGET_5Yrs 1340 21
wine Multivariate Classification (Binary) type 6498 13
telescope Multivariate Classification (Binary) Class 19020 11
glass Multivariate Classification (Multiclass) Type 214 10
iris Multivariate Classification (Multiclass) species 150 5
poker Multivariate Classification (Multiclass) CLASS 100000 11
questions Multivariate Classification (Multiclass) Next_Question 499 4
satellite Multivariate Classification (Multiclass) Class 6435 37
asia_gdp Multivariate Clustering None 40 11
elections Multivariate Clustering None 3195 54
facebook Multivariate Clustering None 7050 12
ipl Multivariate Clustering None 153 25
jewellery Multivariate Clustering None 505 4
mice Multivariate Clustering None 1080 82
migration Multivariate Clustering None 233 12
perfume Multivariate Clustering None 20 29
pokemon Multivariate Clustering None 800 13
population Multivariate Clustering None 255 56
public_health Multivariate Clustering None 224 21
seeds Multivariate Clustering None 210 7
wholesale Multivariate Clustering None 440 8
tweets Text NLP tweet 8594 2
amazon Text NLP / Classification reviewText 20000 2
kiva Text NLP / Classification en 6818 7
spx Text NLP / Regression text 874 4
wikipedia Text NLP / Classification Text 500 3
automobile Multivariate Regression price 202 26
bike Multivariate Regression cnt 17379 15
boston Multivariate Regression medv 506 14
concrete Multivariate Regression strength 1030 9
diamond Multivariate Regression Price 6000 8
energy Multivariate Regression Heating Load / Cooling Load 768 10
forest Multivariate Regression area 517 13
gold Multivariate Regression Gold_T+22 2558 121
house Multivariate Regression SalePrice 1461 81
insurance Multivariate Regression charges 1338 7
parkinsons Multivariate Regression PPE 5875 22
traffic Multivariate Regression traffic_volume 48204 8

3、设置环境

(1)第一步:导入模块

pycaret提供以下6种模块,当你导入相应的模块之后,就将环境切换到了该环境下。

S.No Module How to Import
1 Classification from pycaret.classification import *
2 Regression from pycaret.regression import *
3 Clustering from pycaret.clustering import *
4 Anomaly Detection from pycaret.anomaly import *
5 Natural Language Processing from pycaret.nlp import *
6 Association Rule Mining from pycaret.arules import *

(2)第二步:初始化设置

对于PyCaret中的所有模块都是通用的,设置是开始任何机器学习实验的第一步,也是唯一的必需步骤。 除默认情况下执行一些基本处理任务外,PyCaret还提供了广泛的预处理功能,这些功能在结构上将普通的机器学习实验提升为高级解决方案。 在本节中,我们仅介绍了设置功能的必要部分。 可以在此处找到所有预处理功能的详细信息。 下面列出的是初始化设置时PyCaret执行的基本默认任务:

数据类型推断:在PyCaret中执行的任何实验都始于确定所有特征的正确数据类型。 设置函数执行有关数据的基本推断,并执行一些下游任务,例如忽略ID和Date列,分类编码,基于PyCaret内部算法推断的数据类型的缺失值插补。 执行设置后,将出现一个对话框(请参见以下示例),其中包含所有特征及其推断的数据类型的列表。 数据类型推断通常是正确的,但是一旦出现对话框,用户应查看列表的准确性。 如果正确推断了所有数据类型,则可以按Enter键继续,否则,请键入“ quit”以停止实验。

如果您由于无法正确推断一种或多种数据类型而选择输入“退出”,则可以在setup命令中覆盖它们,方法是传递categorical_feature参数以强制分类类型,而numeric_feature参数则强制数字类型。 同样,为了忽略某些功能以成为实验的一部分,您可以在设置程序中传递ignore_features参数。

注意:如果您不希望PyCaret显示确认数据类型的对话框,则可以在设置过程中以“ True”(静默)方式传递为True,以执行无人看管的实验。 我们不建议您这样做,除非您完全确定推断是正确的,或者您之前已经进行过实验,或者正在使用numeric_feature和categorical_feature参数覆盖数据类型。

数据清理和准备:设置功能会自动执行缺失值插补和分类编码,因为它们对于任何机器学习实验都是必不可少的。 默认情况下,平均值用于数字特征的插补,而最频繁使用的值或模式用于分类特征。 您可以使用numeric_imputation和categorical_imputation参数来更改方法。 对于分类问题,如果目标不是数字类型,则安装程序还将执行目标编码。

数据采样:如果样本量大于25,000,PyCaret会根据不同的样本量自动构建初步的线性模型,并提供可视化效果,以根据样本量显示模型的性能。 然后可以使用该图来评估模型的性能是否随样本数量的增加而增加。 如果不是,您可以选择较小的样本量,以提高实验的效率和性能。 请参见下面的示例,在该示例中,我们使用了pycaret存储库中的“银行”数据集,其中包含45,211个样本。

训练测试拆分:设置功能还执行训练测试拆分(针对分类问题进行了分层)。 默认的分割比例为70:30,但是您可以在设置程序中使用train_size参数进行更改。 仅在Train set上使用k倍交叉验证,才能对PyCaret中已训练好的机器学习模型和超参数优化进行评估。

将会话ID分配为种子:如果未传递session_id参数,则会话ID是默认生成的伪随机数。 PyCaret将此id作为种子分发给所有函数,以隔离随机效应。 这样可以在以后在相同或不同的环境中实现可重现性。

以下是一些例子:

分类:

from pycaret.datasets import get_data
diabetes = get_data('diabetes')
# Importing module and initializing setup
from pycaret.classification import *
clf1 = setup(data = diabetes, target = 'Class variable')

回归:

from pycaret.datasets import get_data
boston = get_data('boston')
# Importing module and initializing setup
from pycaret.regression import *
reg1 = setup(data = boston, target = 'medv')

聚类:

from pycaret.datasets import get_data
jewellery = get_data('jewellery')
# Importing module and initializing setup
from pycaret.clustering import *
clu1 = setup(data = jewellery)

异常检测:

from pycaret.datasets import get_data
anomalies = get_data('anomaly')
# Importing module and initializing setup
from pycaret.anomaly import *
ano1 = setup(data = anomalies)

自然语言处理:

from pycaret.datasets import get_data
kiva = get_data('kiva')
# Importing module and initializing setup
from pycaret.nlp import *
nlp1 = setup(data = kiva, target = 'en')

关联规则挖掘:

from pycaret.datasets import get_data
france = get_data('france')
# Importing module and initializing setup
from pycaret.arules import *
arules1 = setup(data = france, transaction_id = 'InvoiceNo', item_id = 'Description')

更简易的机器学习-pycaret的安装和环境初始化的更多相关文章

  1. 机器学习实战__安装python环境

    环境:win7 64位系统 第一步:安装python 1.下载python2.7.3 64位 msi 版本(这里选择了很多2.7的其他更高版本导致安装setuptools失败,也不知道是什么原因,暂时 ...

  2. CentOS7+CDH5.14.0安装全流程记录,图文详解全程实测-1虚拟机安装及环境初始化

    1.软件准备: VMware-workstation-full-14.1.2-8497320.exe CentOS-7-x86_64-DVD-1804.iso 2.VMare激活码: AU5WA-0E ...

  3. 微软开源自动机器学习工具NNI安装与使用

    微软开源自动机器学习工具 – NNI安装与使用   在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到最佳模型的过程了.对于初学者来说,常常是无从下手.即使是对于有经验的算法工程师 ...

  4. 机器学习库shark安装

    经过两天的折腾,一个对c++和机器学习库的安装都一知半解的人终于在反复安装中,成功的将shark库安装好了,小小纪念一下,多亏了卡门的热心帮忙. shark的安装主要分为以下几个部分: (1)下载 s ...

  5. 机器学习linux系统环境安装

    机器学习linux系统环境安装 安装镜像下载 可以自己去ubuntu官方网站按照提示下载amd64的desktop版本 或者考虑到国内镜像站点下载,如tuna,163, ali等 课程使用最新的17. ...

  6. Windows+Python+anaconda机器学习安装及环境配置步骤

    Windows+Python+anaconda机器学习安装及环境配置步骤 1. 下载安装python3.6以上版本(包含pip,不用自己安装)2. 直接下载安装pycharm安装包(用于编写pytho ...

  7. django 简易博客开发 1 安装、创建、配置、admin使用

    首先贴一下项目地址吧  https://github.com/goodspeedcheng/sblog 到现在位置项目实现的功能有: 1.后台管理使用Admin ,前端显示使用bootstrap 2. ...

  8. 在Windows/Ubuntu下安装OpenGL环境(GLUT/freeglut)与跨平台编译(mingw/g++)

    GLUT/freeglut 是什么? OpenGL 和它们有什么关系? OpenGL只是一个标准,它的实现一般自带在操作系统里,只要确保显卡驱动足够新就可以使用.如果需要在程序里直接使用OpenGL, ...

  9. 第一章 andriod studio 安装与环境搭建

    原文 http://blog.csdn.net/zhanghefu/article/details/9286123 第一章   andriod studio 安装与环境搭建 一.Android Stu ...

随机推荐

  1. 这应该是最适合国内用户的K3s HA方案

    前 言 在面向生产环境的实践中,高可用是我们无法避免的问题,K3s本身也历经多个版本的迭代,HA方案也进行了不断优化,形成了目前的比较稳定的HA方案. 目前官方提供两种HA方案: 嵌入式DB的高可用( ...

  2. 08_Python的数据类型

    1.数字(整型int 浮点型float 复数complex) 1.数字概述 不可变类型,一旦创建不可修改,不是迭代对象,属于原子型 2.整型数int 概述: 整型数是不带有小数部分的数字,包括自然数, ...

  3. Linux平台Zabbix Agent的安装配置

    这里简单总结一下Linux平台Zabbix Agent的安装配置,实验测试的Zabbix版本比较老了(Zabbix 3.0.9),不过版本虽然有点老旧,但是新旧版本的安装步骤.流程基本差别不大.这里的 ...

  4. 浅析vue的两项原理

    一.vue双向绑定原理 Vue.js-作者为中国人尤雨溪 vue实现数据双向绑定主要是:采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()来劫持各个属性的se ...

  5. java之5分钟插入千万条数据

    虽说不一定5分钟就插入完毕,因为取决去所插入的字段,如果字段过多会稍微慢点,但不至于太慢.10分钟内基本能看到结果. 之前我尝试用多线程来实现数据插入(百万条数据),半个多小时才二十多万条数据. 线程 ...

  6. [MySQL]如何将大数值带上 元,万,亿 这样的单位?

    要解决的问题: 某表某字段用来表示交易金额,不同记录的金额相差很大,有的只有几元几角几分,有的却上亿.如果直接就把数值在页面上展示出来,则可读性不佳.因此我们需要将其单位展示出来,如1.23元,3.4 ...

  7. mysql InnoDB引擎是否支持hash索引

    看一下mysql官方文档:https://dev.mysql.com/doc/refman/5.7/en/create-index.html , 从上面的图中可以得知,mysql 是支持hash索引的 ...

  8. Redis之命令

    Redis命令手册:http://doc.redisfans.com/

  9. oracle之二实例与数据库

    实例与数据库 1.Oracle 网络架构及应用环境 看PPT,Oracle结构的基本单元.术语 2.Oracle 体系结构    1)oracle server :database + instanc ...

  10. pytest文档2-pytest+Allure+jenkins+邮箱发送

    前言: 上一章节讲解了tomcat+jenkins的环境搭建,这一章节主要讲一下Allure报告在jenkins上的配置 步骤: 1.新建一个item 2.输入项目的名称,选择自由风格,点击保存 3. ...