云原生系列5 容器化日志之EFK

上图是EFK架构图,k8s环境下常见的日志采集方式。
日志需求
1 集中采集微服务的日志,可以根据请求id追踪到完整的日志;
2 统计请求接口的耗时,超出最长响应时间的,需要做报警,并针对性的进行调优;
3 慢sql排行榜,并报警;
4 异常日志排行榜,并报警;
5 慢页面请求排行,并告警;
k8s的日志采集
k8s本身不会为你做日志采集,需要自己做;
k8s的容器日志处理方式采用的 集群层级日志,
即容器销毁,pod漂移,Node宕机不会对容器日志造成影响;

容器的日志会输出到stdout,stderr,对应的存储在宿主机的目录中,
即 /var/lib/docker/container ;
Node上通过日志代理转发

在每个node上部署一个daemonset , 跑一个logging-agent收集日志,
比如fluentd, 采集宿主机对应的数据盘上的日志,然后输出到日志存储服务或者消息队列;
优缺点分析:
| 对比 | 说明 |
|---|---|
| 优点 | 1每个Node只需要部署一个Pod采集日志 2对应用无侵入 |
| 缺点 | 应用输出的日志都必须直接输出到容器的stdout,stderr中 |
Pod内部通过sidecar容器转发到日志服务

通过在pod中启动一个sidecar容器,比如fluentd, 读取容器挂载的volume目录,输出到日志服务端;
日志输入源: 日志文件
日志处理: logging-agent ,比如fluentd
日志存储: 比如elasticSearch , kafka
优缺点分析:
| 对比 | 说明 |
|---|---|
| 优点 | 1 部署简单;2 对宿主机友好; |
| 缺点 | 1. 消耗较多的资源;2. 日志通过kubectl logs 无法看到 |
示例:
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox
args:
- /bin/sh
- -c
- >
i=0;
while true;
do
echo "$i:$(data)" >> /var/log/1.log
echo "$(data) INFO $i" >> /var/log/2.log
i=$((i+1))
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
- name: count-agent
image: k8s.gcr.io/fluentd-gcp:1.30
env:
- name: FLUENTD_ARGS
value: -c /etc/fluentd-config/fluentd.conf
valumeMounts:
- name: varlog
mountPath: /var/log
- name: config-volume
mountPath: /etc/fluentd-config
volumes:
- name: varlog
emptyDir: {}
- name: config-volume
configMap:
name: fluentd-config
Pod内部通过sidecar容器输出到stdout

适用于应用容器只能把日志输出到文件,无法输出到stdout,stderr中的场景;
通过一个sidecar容器,直接读取日志文件,再重新输出到stdout,stderr中,
即可使用Node上通过日志代理转发的模式;
优缺点分析:
| 对比 | 说明 |
|---|---|
| 优点 | 只需耗费比较少的cpu和内存,共享volume处理效率比较高 |
| 缺点 | 宿主机上存在两份相同的日志,磁盘利用率不高 |
应用容器直接输出日志到日志服务

适用于有成熟日志系统的场景,日志不需要通过k8s;
EFK介绍
fluentd
fluentd是一个统一日志层的开源数据收集器。
flentd允许你统一日志收集并更好的使用和理解数据;

四大特征:
统一日志层
fluentd隔断数据源,从后台系统提供统一日志层;
简单灵活
提供了500多个插件,连接非常多的数据源和输出源,内核简单;
广泛验证
5000多家数据驱动公司以来Fluentd
最大的客户通过它收集5万多台服务器的日志
**云原生**
是云原生CNCF的成员项目

4大优势:
统一JSON日志

fluentd尝试采用JSON结构化数据,这就统一了所有处理日志数据的方面,收集,过滤,缓存,输出日志到多目的地,下行流数据处理使用Json更简单,因为它已经有足够的访问结构并保留了足够灵活的scemas;
插件化架构

fluntd 有灵活的插件体系允许社区扩展功能,500多个社区贡献的插件连接了很多数据源和目的地; 通过插件,你可以开始更好的使用你的日志
最小资源消耗

c和ruby写的,需要极少的系统资源,40M左右的内存可以处理13k/时间/秒 ,如果你需要更紧凑的内存,可以使用Fluent bit ,更轻量的Fluentd
内核可靠

Fluentd支持内存和基于文件缓存,防止内部节点数据丢失;
也支持robust失败并且可以配置高可用模式, 2000多家数据驱动公司在不同的产品中依赖Fluentd,更好的使用和理解他们的日志数据
使用fluentd的原因:
简单灵活
10分钟即可在你的电脑上安装fluentd,你可以马上下载它,500多个插件打通数据源和目的地,插件也很好开发和部署;
开源
**基于Apache2.0证书 完全开源 **
可靠高性能
5000多个数据驱动公司的不同产品和服务依赖fluentd,更好的使用和理解数据,实际上,基于datadog的调查,是使用docker运行的排行top7的技术;
一些fluentd用户实时采集上千台机器的数据,每个实例只需要40M左右的内存,伸缩的时候,你可以节省很多内存
社区
fluentd可以改进软件并帮助其它人更好的使用
大公司使用背书: 微软 , 亚马逊; pptv ;


可以结合elasticSearch + kibana来一起组成日志套件;
快速搭建EFK集群并收集应用的日志,配置性能排行榜;

elasticsearch
Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎,
能够解决不断涌现出的各种用例。 作为 Elastic Stack 的核心,
它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。
详细介绍:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html
kibana
Kibana 是一款开源的数据分析和可视化平台,它是 Elastic Stack 成员之一,
设计用于和 Elasticsearch 协作。您可以使用 Kibana 对 Elasticsearch 索引中的数据进行搜索、
查看、交互操作。您可以很方便的利用图表、表格及地图对数据进行多元化的分析和呈现。
Kibana 可以使大数据通俗易懂。它很简单,
基于浏览器的界面便于您快速创建和分享动态数据仪表板来追踪 Elasticsearch 的实时数据变化.
详细介绍:https://www.elastic.co/guide/cn/kibana/current/introduction.html
容器化EFK实现路径
https://github.com/kayrus/elk-kubernetes
直接拖代码下来,然后配置后 context, namespace , 即可安装;
cd elk-kubernetes
./deploy.sh --watch
下面是deploy.sh的脚本,可以简单看一下:
#!/bin/sh
CDIR=$(cd `dirname "$0"` && pwd)
cd "$CDIR"
print_red() {
printf '%b' "\033[91m$1\033[0m\n"
}
print_green() {
printf '%b' "\033[92m$1\033[0m\n"
}
render_template() {
eval "echo \"$(cat "$1")\""
}
KUBECTL_PARAMS="--context=250091890580014312-cc3174dcd4fc14cf781b6fc422120ebd8"
NAMESPACE=${NAMESPACE:-sm}
KUBECTL="kubectl ${KUBECTL_PARAMS} --namespace=\"${NAMESPACE}\""
eval "kubectl ${KUBECTL_PARAMS} create namespace \"${NAMESPACE}\""
#NODES=$(eval "${KUBECTL} get nodes -l 'kubernetes.io/role!=master' -o go-template=\"{{range .items}}{{\\\$name := .metadata.name}}{{\\\$unschedulable := .spec.unschedulable}}{{range .status.conditions}}{{if eq .reason \\\"KubeletReady\\\"}}{{if eq .status \\\"True\\\"}}{{if not \\\$unschedulable}}{{\\\$name}}{{\\\"\\\\n\\\"}}{{end}}{{end}}{{end}}{{end}}{{end}}\"")
NODES=$(eval "${KUBECTL} get nodes -l 'sm.efk=data' -o go-template=\"{{range .items}}{{\\\$name := .metadata.name}}{{\\\$unschedulable := .spec.unschedulable}}{{range .status.conditions}}{{if eq .reason \\\"KubeletReady\\\"}}{{if eq .status \\\"True\\\"}}{{if not \\\$unschedulable}}{{\\\$name}}{{\\\"\\\\n\\\"}}{{end}}{{end}}{{end}}{{end}}{{end}}\"")
ES_DATA_REPLICAS=$(echo "$NODES" | wc -l)
if [ "$ES_DATA_REPLICAS" -lt 3 ]; then
print_red "Minimum amount of Elasticsearch data nodes is 3 (in case when you have 1 replica shard), you have ${ES_DATA_REPLICAS} worker nodes"
print_red "Won't deploy more than one Elasticsearch data pod per node exiting..."
exit 1
fi
print_green "Labeling nodes which will serve Elasticsearch data pods"
for node in $NODES; do
eval "${KUBECTL} label node ${node} elasticsearch.data=true --overwrite"
done
for yaml in *.yaml.tmpl; do
render_template "${yaml}" | eval "${KUBECTL} create -f -"
done
for yaml in *.yaml; do
eval "${KUBECTL} create -f \"${yaml}\""
done
eval "${KUBECTL} create configmap es-config --from-file=es-config --dry-run -o yaml" | eval "${KUBECTL} apply -f -"
eval "${KUBECTL} create configmap fluentd-config --from-file=docker/fluentd/td-agent.conf --dry-run -o yaml" | eval "${KUBECTL} apply -f -"
eval "${KUBECTL} create configmap kibana-config --from-file=kibana.yml --dry-run -o yaml" | eval "${KUBECTL} apply -f -"
eval "${KUBECTL} get pods $@"
简单分解一下部署的流程:

我的k8s环境中没有搭建成功,后续搭建成功了再出详细的安装笔记。
小结
一句话概括本篇:EFK是一种通过日志代理客户端采集应用日志比较常用的实现方式。

原创不易,关注诚可贵,转发价更高!转载请注明出处,让我们互通有无,共同进步,欢迎沟通交流。
云原生系列5 容器化日志之EFK的更多相关文章
- 8.云原生之Docker容器镜像构建最佳实践浅析
转载自:https://www.bilibili.com/read/cv15220861/?from=readlist 本章目录 0x02 Docker 镜像构建最佳实践浅析 1.Dockerfile ...
- 云原生系列2 部署你的第一个k8s应用
云原生的概念和理论体系非常的完备,but talk is cheap , show me the code ! 但是作为一名程序员,能动手的咱绝对不多BB,虽然talk并不cheap , 能跟不同层次 ...
- 云原生系列3 pod核心字段
pod是容器化的基础,好比大楼的地基. Pod跟容器的关系 类比一下: POD: 物理机容器: 物理机上的一个进程: 容器只是Pod的一个普通字段. Pod的作用范围 跟容器的linux namesp ...
- .NET Core/.NET5/.NET6 开源项目汇总6:框架与架构设计(DDD、云原生/微服务/容器/DevOps/CICD等)项目
系列目录 [已更新最新开发文章,点击查看详细] 开源项目是众多组织与个人分享的组件或项目,作者付出的心血我们是无法体会的,所以首先大家要心存感激.尊重.请严格遵守每个项目的开源协议后再使用.尊 ...
- 5.云原生之Docker容器网络介绍与实践
转载自:https://www.bilibili.com/read/cv15185166/?from=readlist 例如, 当在一台未经过特殊网络配置的centos 或 ubuntu机器上安装完d ...
- 2.云原生之Docker容器环境安装实践
转载自:https://www.bilibili.com/read/cv15181036/?from=readlist 官方一键安装脚本 补充时间:[2020年4月22日 11:00:59] 一键安装 ...
- 云原生系列1 pod基础
POD解决了什么问题? 成组资源调度问题的解决. mesos采用的资源囤积策略容易出现死锁和调度效率低下问题:google采用的乐观调度技术难度非常大: 而k8s使用pod优雅的解决了这个问题. po ...
- 云原生系列6 基于springcloud架构风格的本地debug实现
debug是程序员在日常开发中最常使用的操作, 那么,你是如何快速在微服务架构风格下快速debug后端服务呢? 开发现状 开发的理想状态 本地调测的使用步骤 登录智能网关 如果集成开发环境是在本地局域 ...
- 7.云原生之Docker容器Dockerfile镜像构建浅析与实践
转载自:https://www.bilibili.com/read/cv15220707/?from=readlist Dockerfile 镜像构建浅析与实践 描述:Dockerfile是一个文本格 ...
随机推荐
- Kepware软件基本操作及使用Java Utgard实现OPC通信
一.环境搭建(基于win10 64位专业版) 1.Kepware 的下载.安装及使用 https://www.cnblogs.com/ioufev/p/9366877.html 2.重要:OPC 和 ...
- Python魔法函数与两比特量子系统模拟
技术背景 本文主要涵盖两个领域的知识点:python的魔法函数和量子计算模拟,我们可以通过一个实际的案例来先审视一下这两个需求是如何被结合起来的. 量子计算模拟背景 ProjectQ是一个非常优雅的开 ...
- DEDECMS:安装百度UEDITOR编辑器
第一步:下载相对应编辑器的版本 首先,去百度搜索"百度ueditor编辑器",然后点击进入官网,找到下载页面.找到我们想要的编辑器的版本,看自己网站的编码是UTF-8还是GBK,下 ...
- thymeleaf第一篇:什么是-->为什么要使用-->有啥好处这玩意
Thymeleaf3.0版本官方地址 1 Introducing Thymeleaf Thymeleaf 是一个跟 Velocity.FreeMarker 类似的模板引擎,它可以完全替代 JSP . ...
- 黑客整人代码,vbS整人代码大全(强制自动关机、打开无数计算器、无限循环等)
vbe与vbs整人代码大全,包括强制自动关机.打开无数计算器.无限循环等vbs整人代码,感兴趣的朋友参考下.vbe与vbs整人代码例子:set s=createobject("wscript ...
- Scala集合库、模式匹配和样例类
package com.yz8 import org.junit.Test class test { @Test def test: Unit = { val ints = List(1,5,7,6, ...
- P3355 骑士共存问题 (最小割)
题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击 题解:这个题仔细想想居然和方格取数是一样的!!! 每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色 s-> ...
- Gym - 102861B 、Gym - 102861F、Gym 102861G、Gym 102861L、Gym 102861N、Gym 101968C、Gym 101968D
训练赛链接:https://vjudge.net/contest/410049#problem/D Gym - 102861B 题意: 在一个二维平面上,给你一个船,问你在这个二维平面上有没有船重叠. ...
- c语言中qsort函数的使用、编程中的一些错误
qsort()函数: 功能:相当于c++sort,具有快排的功能,复杂度的话nlog(n)注:C中的qsort()采用的是快排算法,C++的sort()则是改进的快排算法.两者的时间复杂度都是nlog ...
- PowerShell随笔5---添加.NET类型
有些情况下,有些脚本命令不能满足我们的需求,而手头却能用C#很方便的实现. 我们就可以把自定义的类型Add到PowerShell中使用,使用方法和PowerShell调用.NET类库方法是一样的. 以 ...