使用VGG16网络进行迁移学习

使用在ImageNet数据上预训练的VGG16网络模型对猫狗数据集进行分类识别。

1.预训练网络

预训练网络是一个保存好的,已经在大型数据集上训练好的卷积神经网络。

如果这个数据集足够大且通用,那么预训练网络学习到的模型参数可以有效的对图片进行特征提取。即使新问题与原本的数据完全不同,但学习到的特征提取方法依然可以在不同的问题之间进行移植,进而可以在全新的数据集上提取到有效的特征。对这些有效的高级特征进行分类可以大大提高模型分类的准确率。

迁移学习主要适用于已有数据相对较少的情况,如果拥有的数据量足够大,即使不需要迁移学习也能够得到非常高的准确率。

2.如何使用与训练网络

2.1载入图像并创建数据集

首先,读入猫狗数据集中的图片。(实现过程的详细说明在Tensorflow学习笔记No.5中,这里不再赘述)

 1 import tensorflow as tf
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 %matplotlib inline
6 import pathlib
7 import random
8
9 data_root = pathlib.Path('../input/cat-and-dog/training_set/training_set')
10
11 all_image_path = list(data_root.glob('*/*.jpg'))
12 random.shuffle(all_image_path)
13 image_count = len(all_image_path)
14
15 label_name = sorted([item.name for item in data_root.glob('*')])
16 name_to_indx = dict((name, indx) for indx, name in enumerate(label_name))
17
18 all_image_path = [str(path) for path in all_image_path]
19 all_image_label = [name_to_indx[pathlib.Path(p).parent.name] for p in all_image_path]
20
21 def load_pregrosess_image(path, label):
22 image = tf.io.read_file(path)
23 image = tf.image.decode_jpeg(image, channels = 3)
24 image = tf.image.resize(image, [256, 256])
25 image = tf.cast(image, tf.float32)
26 image = image / 255
27 return image, label
28
29 train_image_ds = tf.data.Dataset.from_tensor_slices((all_image_path, all_image_label))
30
31 AUTOTUNE = tf.data.experimental.AUTOTUNE
32 dataset = train_image_ds.map(load_pregrosess_image, num_parallel_calls = AUTOTUNE)
33
34 BATCHSIZE = 16
35 train_count = int(image_count * 0.8)
36 test_count = image_count - train_count
37
38 train_dataset = dataset.take(train_count)
39 test_dataset = dataset.skip(train_count)
40
41 train_dataset = train_dataset.shuffle(train_count).repeat().batch(BATCHSIZE)
42 test_dataset = test_dataset.repeat().batch(BATCHSIZE)

2.2加载与训练网络并构建网络模型

与训练的网络由两个部分构成,训练好的卷积基和训练好的分类器。我们需要使用训练好的卷积基来提取特征,并使用自定义的分类器对自己的数据集进行分类识别。

如下图所示:

训练过程中,我们仅仅对自定义的分类器进行训练,而不训练预训练好的卷积基部分。

预训练的卷积基可以非常好的提取图像的某些特征,在训练过程中,由于分类器是一个全新的没有训练过的分类器,在训练初期会产生很大的loss值,由于数据量较少,如果不对预训练的卷积基进行冻结(不更新参数)处理,产生的loss值经梯度传递会对预训练的卷积基造成非常大的影响,且由于可训练数据较少儿难以恢复,所以只对自定义的分类器进行训练,而不训练卷积基。

首先从tf.keras.applications中创建一个预训练VGG16的卷积基。

1 cov_base = tf.keras.applications.VGG16(weights = 'imagenet', include_top = False)

weight是我们要使用的模型权重,我们使用经imagenet训练过的模型的权重信息进行迁移学习。

include_top是指,是否使用预训练的分类器。在迁移学习过程中我们使用自定义的分类器,所以参数为False。

然后我们对创建好的卷积基进行冻结处理,冻结所有的可训练参数。

1 cov_base.trainable = False

使用keras.Sequential()创建网络模型。

1 model = tf.keras.Sequential()
2 model.add(cov_base)
3 model.add(tf.keras.layers.GlobalAveragePooling2D())
4 model.add(tf.keras.layers.Dense(512, activation = 'relu'))
5 model.add(tf.keras.layers.Dense(1, activation = 'sigmoid'))

在模型中加入卷积基和自定义的分类器。

模型结构如下图所示:

我们得到了一个可训练参数仅为263,169的预训练VGG16网络模型。

2.3使用自定义数据训练分类器

此时模型已经搭建完毕,我们使用之前处理好的数据对它进行训练。

 1 model.compile(optimizer = 'adam',
2 loss = 'binary_crossentropy',
3 metrics = ['acc']
4 )
5
6 history = model.fit(train_dataset,
7 steps_per_epoch = train_count // BATCHSIZE,
8 epochs = 10,
9 validation_data = test_dataset,
10 validation_steps = test_count // BATCHSIZE
11 )
12
13 plt.plot(history.epoch, history.history.get('acc'), label = 'acc')
14 plt.plot(history.epoch, history.history.get('val_acc'), label = 'acc')

训练结果如下图所示:

模型在训练集和测试机上的正确率均达到了94%左右,而且仅仅经过了10个epoch就达到了这样的效果,足以看出迁移学习在小规模数据上的优势。

3.微调

虽然使用预训练网络可以轻易的达到94%左右的正确率,但是,如果我们还想继续提高这个正确率该怎样进行调整呢?

所谓微调,是冻结卷积基底部的卷积层,共同训练新添加的分类器和卷积基顶部的部分卷积层。

根据卷积神经网络提取特征的原理我们不难发现,越底层的卷积层提取到的图像特征越抽象越细小,而顶层的卷积层提取到的特征更大,更加的接近我们能直接观察到的数据特征,由于我们需要训练的数据和预训练时使用的数据不尽相同,所以越顶层的卷积层提取到的特征与我们所需要的特征差别越大。所以,我们只冻结底部的卷积层,将顶部的卷积层与训练好的分类器共同训练,会得到更好的拟合效果。

只有分类器以及训练好了,才能微调卷积基的顶部卷积层,否则由于训练初期的误差很大,会将卷积层之前学习到的参数破坏掉。

所以我们对卷积基进行解冻,并只对底部的卷积进行冻结。

1 cov_base.trainable = True
2 for layers in cov_base.layers[:-3]:
3 layers.trainable = False

然后将模型继续进行训练。

 1 model.compile(optimizer = tf.keras.optimizers.Adam(lr = 0.0001),
2 loss = 'binary_crossentropy',
3 metrics = ['acc']
4 )
5
6 history = model.fit(train_dataset,
7 steps_per_epoch = train_count // BATCHSIZE,
8 epochs = 20,
9 initial_epoch = 10,
10 validation_data = test_dataset,
11 validation_steps = test_count // BATCHSIZE
12 )
13
14 plt.plot(history.epoch, history.history.get('acc'), label = 'acc')
15 plt.plot(history.epoch, history.history.get('val_acc'), label = 'acc')

注意将学习率调小,以便尽可能的达到loss的极小值点。

得到的结果如下图所示:

模型再训练集上达到了近乎100%的准确率,在测试集上也达到了96%左右准确率,微调的效果还是较为明显的。

那么关于迁移学习的介绍到这里就结束了o(* ̄▽ ̄*)o,后续会更新更多内容。

Tensorflow学习笔记No.8的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. Analytics Zoo Cluster Serving自动扩展分布式推理

    作者: Jiaming Song, Dongjie Shi, Gong, Qiyuan, Lei Xia, Wei Du, Jason Dai 随着深度学习项目从实验到生产的发展,越来越多的应用需要对 ...

  2. archaius(3) 配置管理器

    基于上一节介绍的配置源,我们来继续了解配置管理器.配置源只是抽象了配置的获取来源,配置管理器是基于配置源的基础上对这些配置项进行管理.配置管理器的主要功能是将配置从目标位置加载到内存中,并且管理内存配 ...

  3. hystrix文档翻译之开始使用

    获取包 使用maven获取包. <dependency> <groupId>com.netflix.hystrix</groupId> <artifactId ...

  4. hystrix熔断器之command实现

    HystrixCommand是hystrix执行命令的具体实现,实现流程如下: 1.调用HystrixCommandExecutionHook的onStart方法 3.调用HystrixRequest ...

  5. python基础入门语法和变量类型(二)

    列表 列表是 Python 中使用最频繁的数据类型,它可以完成大多数集合类的数据结构实现,可以包含不同类型的元素,包括数字.字符串,甚至列表(也就是所谓的嵌套). 和字符串一样,可以通过索引值或者切片 ...

  6. kafka学习(三)kafka生产者,消费者详解

    文章更新时间:2020/06/14 一.生产者 当我们发送消息之前,先问几个问题:每条消息都是很关键且不能容忍丢失么?偶尔重复消息可以么?我们关注的是消息延迟还是写入消息的吞吐量? 举个例子,有一个信 ...

  7. mysql 事务、隔离级别

    一.事务的四大特性(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节.事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有 ...

  8. Oracle学习(十)Oracle定时任务

    一.Oracle定时任务基础 简介 oracle job 是应用在数据库层面,用来定时执行存储过程或者 SQL 语句的定时器. 查询 --当前库中运行的 job SELECT t.* FROM dba ...

  9. 记一次数据库主从导致严重的bug解决过程

    1.事情起始: 我们每个月要给商家进行出账,所以有定时任务去跑商家的订单和售后进行出账,这个功能已经上线很久了,代码执行多次都没问题,突然有一天,产品找我说出现bug了: 这时,去生产库查询重复的订单 ...

  10. Emgu.CV怎么加载Bitmap

    EmguCV 在4.0.1版本之后没办法用Bitmap创建Image了. 我给大家说下 EmguCV怎么加载Bitmap 下边是 EmguCV 官方文档写的,意思是从4.0.1以后的版本不能直接Bit ...