题目描述

给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个。

输入格式

Line 1: 2 integers, N and L (1 <= N <= 200,000, 1 <= L <= 10^18)

Lines 2..N: The ith line contains two integers p_i and l_i. p_i (1 <= p_i < i) is the first pasture on the shortest path between pasture i and the barn, and l_i (1 <= l_i <= 10^12) is the length of that path.

输出格式

Lines 1..N: One number per line, the number on line i is the number pastures that can be reached from pasture i by taking roads that lead strictly farther away from the barn (pasture 1) whose total length does not exceed L.


这道题有很多高级的做法,但是我都不会

我们分析题目可以得出这样一条结论——对于当前节点u,u的子树中与u的距离大于l的点与u的所有祖先的距离都大于l(u也是自己的祖先)。所以不难想到我们对于每个节点u,我们计算出u的第一个与它距离大于l的祖先anc,那么对于这个祖先,它的答案就要减去size(u)。size表示子树的节点数,初始化每个点的答案为子树的节点数。然后结合之前得到的性质,我们可以用树上前缀和的思想,把这个减去的size(u)累加到anc的祖先中去。

但是你会发现,直接算是有问题的。

首先对于u,它对anc的答案做了值为-size(u)的贡献,并且我们要将这个贡献累加到anc的祖先中去。然后我们发现,对于u的祖先,比如u的父亲fa(u),第一个与fa(u)距离大于l的祖先也必定是anc的祖先,但我们将-size(fa(u))加到了这个祖先中,也就是说这个祖先的答案累加了两次-size(u),答案显然是错的。如何避免呢?很简单,我们将size(fa(u))减去size(u)即可。那么问题就解决了。

对于求第一个距离大于l的祖先,我们可以用倍增来做,那么总的时间复杂度就是O(NlogN)。

*由于size(fa(u))减去的是size(u)原本的大小,而此时size(u)可能已经被u的子节点减去了一些,所以我们要再开一个size数组来记录原本的size。

*不开long long见祖宗

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define maxn 200001
using namespace std; struct edge{
int to,next; long long dis;
edge(){}
edge(const int &_to,const long long &_dis,const int &_next){ to=_to,dis=_dis,next=_next; }
}e[maxn<<1];
int head[maxn],k; int fa[maxn][20],size[maxn],size2[maxn],sum[maxn],maxdep;
int n;
long long m,dis[maxn][20]; inline long long read(){
register long long x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
inline void add(const int &u,const int &v,const long long &w){ e[k]=edge(v,w,head[u]),head[u]=k++; } void dfs(int u){
size[u]=1;
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(v==fa[u][0]) continue;
fa[v][0]=u,dis[v][0]=e[i].dis;
for(register int j=1;j<=maxdep;j++) fa[v][j]=fa[fa[v][j-1]][j-1],dis[v][j]=dis[v][j-1]+dis[fa[v][j-1]][j-1];
dfs(v),size[u]+=size[v];
}
} void dfs_getsum(int u){
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(v==fa[u][0]) continue;
dfs_getsum(v);
long long len=0; int tmp=size[v],tmp2=size2[v];
for(register int j=maxdep;j>=0;j--) if(len+dis[v][j]<=m&&fa[v][j]) len+=dis[v][j],v=fa[v][j];
if(len+dis[v][0]>m&&fa[v][0]) sum[fa[v][0]]+=tmp,size[u]-=tmp2;
}
} void dfs_getans(int u){
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(v==fa[u][0]) continue;
dfs_getans(v),sum[u]+=sum[v];
}
} int main(){
memset(head,-1,sizeof head);
n=read(),m=read();
for(register int i=2;i<=n;i++){
int v=read(); long long w=read();
add(i,v,w),add(v,i,w);
}
maxdep=(int)log(n)/log(2),dfs(1);
for(register int i=1;i<=n;i++) size2[i]=size[i]; dfs_getsum(1);
dfs_getans(1); for(register int i=1;i<=n;i++) printf("%d\n",size2[i]-sum[i]);
return 0;
}

[Usaco2012 Dec]Running Away From the Barn的更多相关文章

  1. BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )

    子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...

  2. BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆

    BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...

  3. 【BZOJ3011】[Usaco2012 Dec]Running Away From the Barn 可并堆

    [BZOJ3011][Usaco2012 Dec]Running Away From the Barn Description It's milking time at Farmer John's f ...

  4. [BZOJ3011][Usaco2012 Dec]Running Away From the Barn

    题意 给出一棵以1为根节点树,求每个节点的子树中到该节点距离<=l的节点的个数 题解 方法1:倍增+差分数组 首先可以很容易的转化问题,考虑每个节点对哪些节点有贡献 即每次对于一个节点,找到其第 ...

  5. bzoj3011 [Usaco2012 Dec]Running Away From the Barn 左偏树

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3011 题解 复习一下左偏树板子. 看完题目就知道是左偏树了. 结果这个板子还调了好久. 大概已 ...

  6. BZOJ_3012_[Usaco2012 Dec]First!_trie树+拓扑排序

    BZOJ_3012_[Usaco2012 Dec]First!_trie树+拓扑排序 题意: 给定n个总长不超过m的互不相同的字符串,现在你可以任意指定字符之间的大小关系.问有多少个串可能成为字典序最 ...

  7. 【BZOJ3012】[Usaco2012 Dec]First! Trie树+拓补排序

    [BZOJ3012][Usaco2012 Dec]First! Description Bessie has been playing with strings again. She found th ...

  8. [USACO 12DEC]Running Away From the Barn

    Description It's milking time at Farmer John's farm, but the cows have all run away! Farmer John nee ...

  9. USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆

    题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...

随机推荐

  1. 多任务-python实现-进程,协程,线程总结(2.1.16)

    @ 目录 1.类比 2.总结 关于作者 1.类比 一个生产玩具的工厂: 一个生产线成为一个进程,一个生产线有多个工人,所以工人为线程 单进程-多线程:一条生产线,多个工人 多进程-多线程:多条生产线, ...

  2. Arduino PROGMEM 从程序空间读取float值的方法

    方法: 使用avr-libc提供的宏定义: #define pgm_read_float_near(address_short) __LPM_float((uint16_t)(address_shor ...

  3. Unity使用小剧场—创建的按钮On Click()只有MonoScript怎么办

    前言: 在游戏开发过程中遇到了一些小问题,以后都放到小剧场里,今天介绍怎么给按钮赋予方法并解决标题所述问题. 步骤: 1. 不管怎么说,先新建一个按钮 右键场景-[UI]-[Button] 这里会自动 ...

  4. .NET Core AWS S3云存储

    前言 最近有需要用到AWS S3云存储上传附件,这里对利用.NET或.NET Core在调用SDK APi需要注意的一点小问题做个记录,或许能对后续有用到的童鞋提供一点帮助 AWS S3云存储 官方已 ...

  5. CentOS7下常用安装服务软件源码编译安装方式的介绍

    简介:介绍源码编译安装软件包的管理 源码安装优点:编译安装过程,可以设定参数,指定安装目录,按照需求进行安装,指定安装的版本,灵活性比较大. 源码安装的缺点:需要对依赖包一个一个的进行安装,不敢随便升 ...

  6. mac 清理磁盘空间

    128G mac真的用的很崩溃,发现系统占用80G ,肯定是有问题的,发现了是缓存的原因,删除后好多了,记录一下. 从管理里进入之后,从文稿中选择"文件浏览器"可以看到每一个文件夹 ...

  7. javap使用

    在反编译前你当然需要先编译这个类了进入当前目录下:javac -g SynchronizedTest.java(使用-g参数是因为要得到下面javap -l时的输出需要使用此选项) 编译完成后,我们在 ...

  8. Spring Boot 有哪些优点?

    a.减少开发,测试时间和努力. b.使用 JavaConfig 有助于避免使用 XML. c.避免大量的 Maven 导入和各种版本冲突. d.通过提供默认值快速开始开发.没有单独的 Web 服务器需 ...

  9. String 类的常用方法都有那些?

    1.indexOf():返回指定字符的索引. 2.charAt():返回指定索引处的字符. 3.replace():字符串替换. 4.trim():去除字符串两端空白. 5.split():分割字符串 ...

  10. JAVA编程能力提升学习图

    阿里大神毕玄整理的关于进阶JAVA的学习体系,知道下...