5.20 省选模拟赛 求和 组合数的性质 EGF CRT
LINK:求和
绝妙的一道题目。没做绝对亏了.



对于第一个subtask 考虑直接递推出组合数.
对于第二个subtask 考虑EGF 设两个EGF 都只含偶数项指标且系数为1的那种 一个到n一个到m 容易发现要求的东西为 两个EGF的卷积.
code score: 30
const int MAXN=50010,maxn=600010,G=3;
int n,m,mod,lim;
int c[2][MAXN];
int fac[maxn],A[maxn],B[maxn],inv[maxn],rev[maxn];
inline int mul(int a,int b){return (ll)a*b%mod;}
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int mus(int a,int b){return a-b<0?a-b+mod:a-b;}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=mul(cnt,b);
b=mul(b,b);p=p>>1;
}
return cnt;
}
inline void NTT(int *a,int op)
{
rep(0,lim-1,i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
int wn=ksm(G,op==1?(mod-1)/len:mod-1-(mod-1)/len);
for(int j=0;j<lim;j+=len)
{
int d=1;
for(int i=0;i<mid;++i)
{
int x=a[i+j],y=mul(a[i+j+mid],d);
a[i+j]=add(x,y);a[i+j+mid]=mus(x,y);
d=mul(d,wn);
}
}
}
if(op==-1)
{
int INV=ksm(lim,mod-2);
rep(0,lim-1,i)a[i]=mul(a[i],INV);
}
}
int main()
{
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
get(n);get(m);get(mod);
if(n&1)--n;if(m&1)--m;
m=min(n,m);
if(n<=5000&&m<=5000)
{
int ans=1;
c[0][0]=1;
rep(1,n,i)
{
rep(0,min(i,m),j)
{
if(!j)c[i&1][j]=1;
else c[i&1][j]=add(c[(i-1)&1][j-1],c[(i-1)&1][j]);
if(!(i&1)&&!(j&1))ans=add(ans,c[i&1][j]);
}
}
put(ans);return 0;
}
if(n<=200000&&m<=200000&&mod==998244353)
{
fac[0]=1;
rep(1,n,i)fac[i]=mul(fac[i-1],i);
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=mul(inv[i+1],i+1);
for(int i=0;i<=n;i+=2)A[i]=inv[i];
for(int i=0;i<=m;i+=2)B[i]=inv[i];
lim=1;while(lim<=n+m)lim=lim<<1;
rep(0,lim-1,i)rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
NTT(A,1);NTT(B,1);
rep(0,lim-1,i)A[i]=mul(A[i],B[i]);
NTT(A,-1);int ans=0;
rep(0,n,i)
{
if(i&1)continue;
A[i]=mul(A[i],fac[i]);
ans=add(ans,A[i]);
}
put(ans);
return 0;
}
}
我只能做这么多了。
剩下的考虑先推一些关于组合数的式子.
先考虑题解的绝妙式子吧:
将C(i,j)变成二项式定理展开后的式子 那么原式=
\(\sum_{j=0}^m\sum_{i=0}^n [x^j](x+1)^i,i\mod 2==0,j\mod 2==0\)
容易发现第二项是一个等比数列 可以先求一下和. 将n变成偶数。
设\(F(x)=\frac{(x+1)^{n+2}-1}{(x+1)^2-1}\)
所求就变成了\(\sum_{j=0}^m[j\mod 2==0][x^j]F(x)\)
(剩下需要 高深的东西了 二阶线性递推
源神给我讲了他的做法:
设\(g_j=\sum_{i=0}^nC(i,j)[i\mod 2==0],l_j=\sum_{i=0}^nC(i,j)[i\mod 2==1]\)


所以就可以递推出g了。
subtask3 很容易就解决了。(注意 组合数中有和mod相等的数的出现.
subtask4 可能不存在逆元了 通常都是 质因数分解然后CRT合并.
2的逆元还存在 所以还是可以递推的 复杂度 mlog^2 log很小 所以可以过。
subtask5 2的逆元可能不存在了 单独考虑模数2^b.
把递推式倒着写发现就没有除以2的问题了 考虑如何先求出gm.
做法如下:

code:
const int MAXN=1000050,maxn=50;
int n,m,B,ww,xx,yy,cnt,mod;
int w[maxn],p[maxn],f[maxn],v[maxn],phi[maxn],IN[maxn];
int C[MAXN],g[MAXN],G[MAXN];
inline void exgcd(int a,int b)
{
if(!b){xx=1;yy=0;return;}
exgcd(b,a%b);
int zz=xx;xx=yy;yy=zz-a/b*yy;
}
inline int inv(int a,int b)
{
exgcd(a,b);
return (xx%b+b)%b;
}
inline int ksm(int b,int p,int mod)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
int main()
{
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
get(n);get(m);get(mod);ww=mod;
if(n&1)--n;if(m&1)--m;
if(mod==1){puts("0");return 0;}
m=min(n,m);
for(int i=2;i*i<=ww;++i)
if(ww%i==0)
{
p[++cnt]=i;
w[cnt]=f[cnt]=1;v[cnt]=0;
while(ww%i==0)
{
w[cnt]*=i;
ww/=i;
}
phi[cnt]=w[cnt]/i*(i-1);
IN[cnt]=inv(mod/w[cnt],w[cnt]);
}
if(ww>1)
{
p[++cnt]=ww;w[cnt]=ww;
f[cnt]=1;v[cnt]=0;
phi[cnt]=ww-1;
IN[cnt]=inv(mod/w[cnt],w[cnt]);
}
C[0]=1;
rep(1,min(n+2,m+32),i)
{
int ans=0;
rep(1,cnt,j)
{
int w1=n+2-i+1;
int w2=i;
while(w1%p[j]==0)
{
++v[j];
w1/=p[j];
}
while(w2%p[j]==0)
{
--v[j];
w2/=p[j];
}
f[j]=(ll)f[j]*w1%w[j]*ksm(w2,phi[j]-1,w[j])%w[j];
int v1=(ll)ksm(p[j],v[j],w[j])*f[j]%w[j];
ans=(ans+(ll)IN[j]*v1%mod*(mod/w[j]))%mod;
}
C[i]=ans;
}
int w1=p[1]==2?mod/w[1]:mod;
int ans=0;
g[0]=n/2+1;ans=g[0]%=w1;
int INV=inv(2,w1);
rep(1,m,i)
{
g[i]=((ll)(C[i+1]-g[i-1])%w1*INV%w1+w1)%w1;
if(!(i&1))ans=(ans+g[i])%w1;
}
if(p[1]==2)
{
int cc=w[1];
while(cc!=1)
{
++B;
cc=cc>>1;
}
cc=1;int ans1=0;
rep(0,B-1,i)G[m]=(G[m]+(ll)cc*C[i+m+2])%w[1],cc=cc*(-2)%w[1];
ans1=G[m];
fep(m-1,0,i)
{
G[i]=(C[i+2]-(ll)2*G[i+1])%w[1];
if(!(i&1))ans1=(ans1+G[i])%w[1];
}
//合并 ans1 ans
int c1=inv(mod/w[1],w[1]);
int c2=inv(mod/w1,w1);
ans=((ll)ans*c2%mod*(mod/w1)%mod+(ll)ans1*c1%mod*(mod/w[1])%mod)%mod;
}
ans+=mod;ans%=mod;put(ans);
return 0;
}
5.20 省选模拟赛 求和 组合数的性质 EGF CRT的更多相关文章
- 5.20 省选模拟赛 T1 图 启发式合并 线段树合并 染色计数问题
LINK:图 在说这道题之前吐槽一下今天的日子 520 = 1+1+4+514. /cy 这道题今天做的非常失败 一点分都没拿到手 关键是今天的T3 把我整个人给搞崩了. 先考虑 如果得到了这么一张图 ...
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
- 3.28 省选模拟赛 染色 LCT+线段树
发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...
- 【2018.10.20】noip模拟赛Day3 飞行时间
今天模拟赛题目 纯考输入的傻逼题,用$scanf$用到思想僵化的我最终成功被$if$大法爆$0$了(这题只有一组$100$分数据). 输入后面那个$(+1/2)$很难$if$判断,所以我们要判两个字符 ...
- 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...
- NOI2019省选模拟赛 第五场
爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\( ...
- NOI2019省选模拟赛 第六场
传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作&q ...
- FCS省选模拟赛 Day5
传送门 Solution Code #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?( ...
随机推荐
- css hack原理及常用hack
原理:利用不同浏览器对CSS的支持和解析结果不一样编写针对特定浏览器样式.常见的hack有1)属性hack.2)选择器hack.3)IE条件注释 IE条件注释:适用于[IE5, IE9]常见格式如下 ...
- 微信h5页面下拉露出网页来源的解决办法
微信h5页面下拉露出网页来源的解决办法:将document的touchmove事件禁止掉 //禁止页面拖动 document.addEventListener('touchmove', functio ...
- 状压DP之排列perm
题目 [SCOI2007]排列 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. 输 ...
- PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片 ...
- 字符串的排列(剑指offer-27)
题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述: 输 ...
- 合并两个有序链表(剑指offer-16)
题目描述输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 解答方法1:递归 /* public class ListNode { int val; List ...
- Jenkins Pipeline 部署 SpringBoot 应用
一. 安装依赖包 yum install -y wget yum install -y gcc-c++ yum install -y zlib-devel perl-ExtUtils-MakeMake ...
- wcf服务各种情况下应用
1.控制台调用 第一步,添加wcf服务 2.写接口,记得要加好契约特性. 3.声明一个类继承wcf服务. 4.ipconfig配置 5.控制台运行 6.运行app.config里面,加上调用的接口方法 ...
- 【JMICRO】 微服务简介及异步RPC体验
一,为什么写JMicro 印象中初次接触微服务大概是2011年,那会做Eclpise插件开发,网上查看好多关于OSGI的技术文章,发现Spring新出了一个叫Spring-boot的框架,那会没太上心 ...
- java 基本语法(十) 数组(三) 二维数组
1.如何理解二维数组? 数组属于引用数据类型数组的元素也可以是引用数据类型一个一维数组A的元素如果还是一个一维数组类型的,则,此数组A称为二维数组. 2.二维数组的声明与初始化 正确的方式: int[ ...